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ABSTRACT
Verbal and non-verbal activities convey insightful information
about people’s a�ect, empathy, and engagement during social inter-
actions. In this paper, we investigate the usage of inertial sensors
to recognize verbal (e.g., speaking), non-verbal (e.g., head nodding,
shaking) and other activities (e.g., eating, no movement). We im-
plement an end-to-end deep neural network to distinguish among
these activities.We then explore the generalizability of the approach
in three scenarios: (1) using new data to detect a known activity
from a known user, (2) detecting a novel activity of a known user
and (3) detecting the activity of an unknown user. Results show that
using accelerometer and gyroscope sensors, the model achieves a
balanced accuracy of 55% when tested on data from a new user,
41% on a new activity of an existing user, and 80% on new data of a
known activity from an existing user. The results are between 7-47
percentage points higher than baseline classi�ers.

CCS CONCEPTS
•Human-centered computing!Ubiquitous andmobile com-
puting systems and tools.
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1 INTRODUCTION
Our motivation for detecting verbal and non-verbal activities is
rooted in our work on building human memory augmentation sys-
tems. Using earable computing, we attempt to recognize di�erent
types of human activities, in particular head gestures, with the pur-
pose of detecting when a social interaction is taking place. This is
because the presence of others and our interactions with them play
important roles in our memories, both during the formation of mem-
ory [32] and at retrieval time [6]: moments of social interactions
might be easier to remember (formation time), and remembering
a particular interaction might also help to remind us of particular
details (retrieval time).

The importance of human memory for our daily lives cannot
be overstated. It gives us an identity, lets us remember future in-
tentions, carry quotidian tasks, and obtain new knowledge. It also
allows us to share experiences and maintain and nurture relation-
ships [20]. Therefore, civilization has applied increasingly com-
plex methods to preserve its memories and overcome their failures.
Today, capture technology such as cameras, voice recorders, and
�tness trackers are coming close to making total capture (and, con-
sequently, total recall [2]) a possibility, if not already a reality [13].
However, even if every part of our lives is captured and recorded, it
is far from trivial to then use this information to aid our memory.

Memory augmentation systems will only succeed as long as they
are able to appropriately select the relevant memories for the user
[30]. In fact, instead of presenting the user a fully recorded memory,
these systems should take advantage of the power of memory cues
– objects or events that help us remember our original memory or
intent. By prompting the user with such a (small) cue, they will
be able to recall the original experience in great detail. One key
challenge here is to identify appropriate cues among the recorded
data that, when played back to the user, will trigger such recall.
Social interaction might mark important moments that may make
useful memory cues.

Social interaction can be easily detected using audio sensing:
detecting a conversation is a sure sign of interpersonal activity.
Similarly, closely tracking the movements and orientation of peo-
ple could allow us to identify social interaction. Alternatively, a
wearable camera may pick up faces of others and identify social
interaction. All three options rely on highly sensitive personal data.
Instead, we seek to identify head gestures to detect both verbal and
nonverbal social interaction from inertial signals.

To summarize, this paper presents the following contributions:

https://doi.org/10.1145/3460418.3479322
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• We present a new dataset comprised of accelerometer and
gyroscope data collected using ear-worn devices. The dataset
was collected from 10 participants performing 5 scripted ac-
tivities: nodding, speaking, eating, staying, and head shaking.

• We investigate the feasibility of using a deep Convolutional
Neural Network (CNN) to recognize activities related to
social interactions such as verbal (e.g., speaking) and non-
verbal (e.g., nodding) gestures, as well as gestures unrelated
to interactions (e.g., eating).

2 RELATEDWORK
The continuous development of unobtrusive wearable sensors has
made possible the recording of new types of data in uncontrolled
settings. Of particular interest to our work is the use of earable
sensors, i.e., head-mounted in-ear/behind-the-ear sensors, to detect
speech and head gestures, as cues for human interaction. As previ-
ously mentioned, other approaches (e.g., cameras and microphones)
require an involved setup with additional privacy issues to consider.

Current earable devices can accommodate several sensors (e.g.
accelerometers, gyroscopes, microphones or biometric sensors) and
actuators (e.g., speaker) in a comfortable size with decent battery
autonomy, allowing not only sound and head movement measure-
ments, but also of head rotation and bio-signals, among others.

2.1 Earable Systems
Earable sensors have been proposed as a tool with "enormous po-
tential in accelerating our understanding of a wide range of human
activities in a nonintrusive manner", with applications ranging
from "health tracking" to "contextual noti�cation management" ,
including "cognitive assistance" and "lifelogging" [22].

Among the applications to deepen our understanding of human
behaviour, Frohn et al. [11] have used an earable sensor to charac-
terize the emotional intent of study participants performing a series
of scripted scenes. Although the results were limited due to the
reduced sample size and the use of non-actors, they showed that
participants act more energetically and in sync when the scenes
have a positive intent, than otherwise.

Röddiger et al. [29] instead used in-ear accelerometer and gy-
roscope sensors for health tracking, by measuring the respiration
rate of the participants.

Other applications include: EarDynamic [33], a biometric-based
authentication method which models users’ ear canal deformation
through the emission of inaudible audio signals and their re�ections;
and EarBuddy [34], a gesture recognition system which uses the
microphones on the earbuds to detect di�erent types of �nger
touches in the face.

Although these approaches have done novel applications with
the available earable technology, none of them have focused on
recognizing verbal and non-verbal activities from inertial signals.

2.2 Human Behaviour Detection
Earable sensors bene�t particularly from the proximity and contact
with the face to be able to distinguish themovements of the jawbone
and the activation of the di�erent muscles.

EarBit [1], for example, was a prototype with multimodal (acous-
tic, motion) sensors to detect chewing episodes. It used an optical

proximity sensor to measure the deformation of the ear canal pro-
duced by the movement activity of the mandibular bone, and a
9-axis Inertial Measurement Unit (IMU) to capture the movement
of the temporalis muscle, used when chewing. EarBit also included
a microphone located around the neck to detect swallowing events.
A chest-mounted GoPro was used as ground truth collector. Aur-
acle [3] is another example of eating detection, but with the use
of a contact microphone instead, and an unobtrusive ground truth
collector embedded into a cap.

In STEAR [28], ear mounted IMU sensors have been proposed
as a new approach for step counting, with the bene�t of not being
a�ected by random motions of leg and hand, like it would happen
with a smartphone or a smartwatch, respectively.

Only a few researchers focused on the recognition of head ges-
tures and human activities, even in social interaction settings, with
the use of earables.

Gjoreski et al. [16] used a 9-axis IMU to detect 8 individual daily
life activities from a dataset of 4 subjects. Ferlini et al. [10] used an
ear-worn device to track head rotations while performing activities
like chewing and speaking. Min et al. [26] used an IMU sensor
and a microphone for monitoring conversational well-being, using
models that recognize speaking activities, altogether with stress
and emotion detection. Tan et al. [31] used earable devices to detect
the head orientation of interacting groups and used it as a cue
for directed social attention. Lee et al. [24] focused instead on the
recognition of smile and frowns gestures, while Islam et al. [21]
proposed an activity recognition framework di�erentiating between
head andmouth related activities (e.g. head shaking, nodding, eating
and speaking), and normal activities (e.g. staying, walking and
speaking while walking).

Our work further expands on Islam et al.’s by considering the
detection of verbal and non-verbal gestures in the context of social
interactions, with the intent of marking part of those moments as
important for the use of memory cues.

2.3 Human Memory Augmentation
The idea of a system that stores one’s digital records (e.g., docu-
ments, images, multimedia etc.) for a lifetime goes back to the 1945
vision of the Memex by Vannevar Bush [7]. While Bush did not de-
tail the exact technology for implementing his vision, he predicted
an era when storage will be virtually unlimited. Some 60 years later,
the MyLifeBits project attempted to ful�ll the promise of Bush’s
vision [14]. MyLifeBits started as a platform that could log all per-
sonal information generated and accessed on a PC, but its memory
enhancing aspects quickly emerged [13]. More recently, Davies et
al. [9] described the vision and core architectural building blocks of
a future pervasive memory augmentation ecosystem, while Harvey
et al. described the role of lifelogging technology in this vision [19].

3 DATA COLLECTION
We provide below details about the participants, the type of data we
collected, the tools used to do it and the data collection procedure.

3.1 Collected Data and Tools
For each participant, we recorded data from accelerometer and gy-
roscope sensors. To collect sensor data, we used the eSense earbuds
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Figure 1: Experimental Protocol. Participants performed
each activity for 3 minutes, with no particular order.

developed by Kawsar et al. [23] at Nokia Bell Labs. The eSense
earbuds are equipped with 6-axis Inertial Measurement Unit (IMU)
sensors, comprised of 3-axis accelerometer and 3-axis gyroscope
sensors [5]. Being worn on the ear, the eSense is suited for gath-
ering sensor data for detecting human gestures in an unobtrusive
and continuous manner.

The acccelerometer sensor measures the acceleration of the de-
vice in G-force [5]. The gyroscope sensor measures the rotation
of the device in degrees per second (deg/sec) [5]. Acceleration and
gyroscope data measured from ear-worn devices have been shown
to re�ect the movements of the head and facial muscles [1, 22, 24].
Thereby, they seem suitable to detect whether a person is interact-
ing with another individual or not. The eSense device also contains
a microphone sensor, which could be used to detect verbal activities
during social interactions such as e.g., speaking. However, micro-
phone use raises privacy concerns for users [25, 26] and is not
suitable to detect non-verbal types of interactions (e.g., nodding).

To collect the sensor data, we use the eSense app1. The eSense
app is a smartphone application developed for the Android operat-
ing system. The application was initially implemented by Islam et
al. [21] and then extended by Frohn et al. [11]. The app connects
via Bluetooth Low Energy (BLE) to the eSense earbuds and obtains
the sensor data. We set the sampling rate of the sensors to 25 Hz.

3.2 Participants and Procedure
We recruited 10 participants (6 females and 4 males). The majority
of the participants were between 18 - 34 years old, and one was
over 55 years old. Participants had di�erent occupations such as
e.g., worker (3), postdoctoral researcher (1), Ph.D. student (1), and
University student (5).

Before meeting each participant, we charged the eSense and the
mobile phone. Previous to the experiment, the researcher respon-
sible for running the data collection explained the study goal and
the data collection procedure to the participant. All participants
signed an informed consent form. The experimenter provided the
left earbud to the participant and instructed how to wear it. The
left eSense earbud was then connected to the Android application.
The participant was then instructed to �rst select the activity they
wished to perform, and then to select the start button on the app
to record the sensor data. At the end of recording an activity, the
participants stopped the data recording and repeated the same
procedure for another activity.

The participants performed �ve scripted activities, namely, nod-
ding, speaking, eating, standing still, and head shaking. We choose
these activities to investigate whether verbal and non-verbal in-
teraction activities (e.g., speaking and nodding) are distinguishable

1https://github.com/SabrinaFrohn/Esense

from other head andmouth-related activities (e.g., eating, head shak-
ing) as well as no activity at all (e.g., standing still). The participants
performed each activity for 3 minutes, one after the other, and they
were free to pick the order in which the activities were performed.
A simple diagram of this procedure can be seen in Figure 1.

4 DATA ANALYSIS
The main goal of our work is to develop a method to recognize
human verbal, non-verbal interactions or no interactions using
inertial signals. In this section, we describe the end-to-end deep
learning pipeline we developed as well as the evaluation procedures,
metrics and baselines used.

4.1 Data Pre-processing
To pre-process the signals, we follow common pre-processing steps
used in the literature for human activity recognition from inertial
signals [5]. In particular, after dividing the dataset into train and
test splits, we segment the sensor data for each split into 4 seconds
windowswith 75% overlap. After the segmentation, our �nal dataset
contains 1210 speaking samples, 1162 nodding, 1272 eating, 1179
head shaking and 1127 standing still. The measurement unit of
acceleration data is converted to ± 4g and gyroscope data to ± 500
deg/s directly in the application used to collect the data.

4.2 Convolutional Neural Network (CNN)
We developed an end-to-end CNN, which takes as input the 4-
second windows of raw 3-axis accelerometer and gyroscope signals
(see Figure 2). The accelerometer and gyroscope sensor data is �rst
processed by three convolutional layers, each with a kernel size
of 7, 128 feature maps and ReLU activation function. These layers
learn feature representation from the raw sensor data. The output
of the last convolutional layer is then �attened and provided as
input to a max pooling layer. To avoid over-�tting, we employed
dropout regularization with a dropout rate of 0.5. The output of the
last layer of the model is provided as input to a sigmoid function,
which returns a k dimensional output with estimated probability
between 0 and 1, where k is the number of activity classes, which
is 3 (non-verbal, verbal, or other).

4.3 Evaluation Procedures
To evaluate the performance of the CNN classi�er, we follow com-
mon procedures in machine learning [15, 27]. In particular, we
investigate three validation procedures described as following.
Leave-one-part-out (LOPO) validation procedure uses the data of all
participants, except one, and the �rst 80% of the data of each activity
from the left-out user in the training set. The remaining 20% of each
activity of the left-out user is used in the test set. The procedure is
repeated for all participants and the results are reported as average
of all iterations. This approach veri�es the ability of the model
to generalize to unseen data of a known user. It also avoids the
temporal leak issue, discussed in [8], which refers to situations when
a model is trained on data from the future. With this approach, we
ensure that the test set is posterior to the data in the training set.
Leave-one-activity-out (LOAO) evaluation approach uses all the
data of all users, except one activity of one user, in the training set.
The left-out activity of the user is kept as the test set. The same

https://github.com/SabrinaFrohn/Esense
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Figure 2: Overview of the end-to-end deep learning pipeline. The raw acceleremeter and gyroscope data collected from eSense
earbuds is provided as input the CNN. The model classi�es each data sample as a verbal, non-verbal or other activity.

procedure is repeated for all activities of the left-out user and then
for all the users. We report the classi�cation results as the average
of all iterations. The main goal of this technique is to avoid having
segments from a same trace (e.g., activity) collected from one user
in both training and testing sets. This is because adjacent segments
are not statistically independent, as discussed in [18]. This approach
veri�es the ability of the model to recognize new activities from
a known user by learning from the presence of an activity in the
training set from other users.
Leave-one-subject-out (LOSO) validation scheme uses the data of all
users except one in the training set and the left-out user as the test
set, as used in [24, 25]. This procedure is repeated for all the users.
We report the classi�cation results as the mean metrics for all users.
This validation procedure ensures that the training set does not
contain all of the activities from one user. With this technique, we
aim to investigate the generalization of the model to new users.

4.4 Evaluation Metrics
To evaluate the performance of the model, we use accuracy, bal-
anced accuracy and F1. Accuracy quanti�es the number of samples
correctly classi�ed by the model [27]. Balanced accuracy score is
de�ned as the average of recall score obtained in each class [4].
This score is suitable to compare the performance of imbalanced
datasets because it also takes into consideration the minority class.
To further explore the performance of the classi�er in all the classes,
we also report the weighted F1metric. The F1 score is the harmonic
mean of precision and recall [27].

4.5 Baseline Classi�ers
We compare the performance of the CNN with Random Guess (RG)
and Biased Random Guess (BRG) baselines. RG provides a classi-
�cation uniformly at random. BRG takes into consideration the
distribution of the classes in the training set and generates a biased
prediction. In particular, BRG always predicts the most frequent
label in the training set, as used in [12].

5 RESULTS
In what follows, we present and discuss the evaluation results.
We �rst report the performance of the CNN using the di�erent
evaluation procedures and baseline classi�ers described in Section
4. We then investigate the performance of each sensor separately
(unimodal) and their combination (multimodal).

5.1 Evaluation Procedures Comparison
We �rst compare the performance of the CNN model using LOPO,
LOAO and LOSO validation techniques. Figure 3 shows the balanced
accuracy of CNN and baseline classi�ers for each evaluation tech-
nique. In all cases, the results are higher than baseline classi�ers.
These results imply that it is feasible to use ear-worn devices to dis-
tinguish between verbal, non-verbal and other activities performed
during social interactions. Overall the classi�cation results using
LOPO are signi�cantly higher than using LOAO or LOSO. In particu-
lar, the CNN has a balanced accuracy of 80%, which is 25 and 39
percentage points increment from LOSO and LOAO validation tech-
niques. As expected, the presence of annotated data from the test
user allows the model to achieve a higher performance. Therefore,
future systems that aim to distinguish between verbal, nonverbal
and other activities using earbuds, should �rst train the model with
data from the user to avoid the cold start problem. The performance
drop of the CNN when using the LOSO or LOAO techniques, suggests
that such systems are di�cult to generalize to the data of a new user
or a new activity of a user. Given that LOPO validation procedure
provides the best results, in the next experiments we present more
detailed results for this validation procedure.

5.2 Comparison to Baseline Classi�ers
Figure 4 shows di�erent classi�cation metrics for RG, BRG and
CNN classi�ers, using the best validation procedure explored in
this work, LOPO. In particular, balanced accuracy for the CNN is 80%,
36% for the RG and 33% for the BRG. Our model shows 44 and 47
percentage points increment compared to RG and BRG classi�ers.

Figure 5 shows the balanced accuracy for each participant using
the LOPO validation approach and the CNN, as the best model
available among those tested. We observe that the performance of
the CNN for the majority of the users is higher than 60%, with the
exception being users P01 and P03.

5.3 Unimodal vs Multimodal
In this set of results, we investigate the performance of training
with single (unimodal) and multiple sensors (multimodal). Uni-
modal refers to experiments where only one sensor’s data (e.g., ac-
celerometer) is used as input to the CNN model. Multimodal refers
to experiments using both accelerometer and gyroscope data. Fig-
ure 6 presents the balanced accuracy scores obtained for unimodal
and multimodal approaches using LOPO validation. The balanced
accuracy for the accelerometer data is 75%, for the gyroscope data
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Figure 3: Results of CNN model using leave-one-part-
out (LOPO), leave-one-activity-out (LOAO) and leave-one-
subject-out (LOSO).
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model using only accelerometer, only gyroscope or
both as input.

is 69%, and for their combination is 80%. We observe that the perfor-
mance of the multimodal classi�er is higher than the performance
of unimodal classi�ers by 5 and 11 percentage points respectively.
These results imply that combining data from several sensors al-
lows recognizing user’s interactions better than using only one
sensor. This outcome highlights the importance of considering not
only the movements but also the rotation angle of the device during
these activities, which is in line with other end-to-end deep learning
studies on activity recognition [17].

6 LIMITATIONS AND FUTUREWORK
A limitation of our study is the data collected in a controlled setting.
This might not re�ect the challenges of collecting such data in real-
world scenarios. In future work, we plan to run a larger study in
naturalistic settings and verify the generalizability of our approach
to new settings where users’ movements are not constrained. In

addition, we plan to investigate the relationship between the fre-
quency of such activities and participants’ memory recall.

While end-to-end deep learning o�ers the possibility to build
activity recognition models without feature engineering, it also
requires larger training datasets. As the dataset used in this study
is relatively small, in the future we plan on implementing shallow,
feature-based classi�ers, and on increasing the size of the dataset
to implement other end-to-end deep learning architectures.

In this work, we segmented accelerometer and gyroscope sensor
data using a sliding window of 4 seconds. We plan on comparing dif-
ferent segmentation strategies (e.g., overlapping, non-overlapping)
and window sizes, as in [25].

7 CONCLUSIONS
Social interaction presents an interesting feature for identifying
moments that lend themselves to memory cue generation. Instead
of using video, audio, or location tracking technology, we envision
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the use of unobtrusive inertial sensors to identify moments of social
interaction – both verbal and non-verbal. This study showed that
such sensors are useful for recognising a variety of headmovements,
which could be used as context information for future human mem-
ory augmentation systems.
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ABSTRACT
Globally around 50 million people are currently living with demen-
tia, and there are nearly 10million new cases every year. The decline
of memory and, with it, lack of self-con�dence and continuous con-
fusion have a devastating e�ect on people living with this disease.
Dementia patients even struggle to accomplish mundane chores
and require assistance for daily living and social connectedness.
Over the past decade, we have seen remarkable growth in wearable
technologies to manage our health and wellbeing and improve our
awareness and social connectedness. However, we have to ask why
wearables are not addressing this fundamental challenge of mem-
ory augmentation that threatens our society? Some limited existing
work on cognitive wearables for dementia has focused on using
images via camera-based life-logging technology. Instead, in this
paper, we argue that earable - by virtue of its unique placement, rich
sensing modalities, and acoustic feedback capabilities, uncovers
new opportunities to augment human cognition to address this
pressing need to assist dementia patients. To this end, we delve into
fundamental principles of cognitive neuroscience to understand
what constitutes memory disorder and its symptoms concerning er-
rors in everyday activities. Building on this, we discuss the bene�ts
of earables (in conjunction with smart objects) in modelling activ-
ity and intention of dementia patients and providing contextual
memory cues. We put forward a guidance system to assist dementia
patients with daily living and social connectedness.

CCS CONCEPTS
• Computer systems organization! Embedded systems.
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1 INTRODUCTION
50 million people worldwide live with dementia, and nearly 10 mil-
lion new cases are reported every year [1]. The loss of memory and,
with it, a sense of identity are the most distressing aspects of this
disease. Dementia patients even struggle to accomplish mundane
chores and require assistance for daily living and social connected-
ness [1].

Various memory aids have been proposed to help people with
dementia and mild cognitive impairments (MCI). The most common
examples of traditional methods are post-it notes, calendars, and
diaries [2]. Memory assistive technologies with electronic devices
are also widely used, such as note-taking on digital devices and in-
telligent digital assistants (Siri, Cortana, Google Assistant). Recent
wearable technologies enabled context-aware, automated interven-
tion by leveraging a variety of sensors. The wearable remembrance
agent [25] is a �rst-kind-of wearable system for augmentedmemory.
It continuously monitors information retrieved from computers
such as note �les and emails, and provides just-in-time one-line
summaries of information relevant to the user’s location and time.
Hodges et al. presented SenseCam [11], a wearable camera for a ret-
rospective memory aid, which automatically records surrounding
events and helps wearers review the recordings and stimulate their
memory. DejaView [4] is a healthcare system that infers a user’s
surrounding contexts with a combination of sensors, including an
accelerometer, a microphone, and a camera, and aids recall of daily
activities and plans by unobtrusively cueing the user with relevant
information. However, the existing work on cognitive wearables
has been still limited to be practically used in daily life. The camera-
based solutions for memory support require users to carry a bulky
device and to make additional attention to the real-time interaction,
e.g., with the smartphone or a computer display.

Here, we ask how wearables can help dementia patients live a
better and more independent life. To answer the questions, we focus
on the everyday tasks of dementia patients, such as tea-making,
getting dressed, and pill-taking, which adults with dementia are
known to struggle with. This inability to carry out activities of
daily living is associated with a diminished quality of life, poor
self-esteem, anxiety, and social isolation [3].

https://doi.org/10.1145/3460418.3479324
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In this paper, we argue that earable - by virtue of its unique
placement, rich sensing modalities, and acoustic feedback capabili-
ties uncovers new opportunities to augment human cognition to
address this pressing need to assist dementia patients. To this end,
we delve into fundamental principles of cognitive neuroscience to
understand what constitutes this memory disorder and its symp-
toms concerning errors in everyday activities. We �rst give a primer
on dementia, along with a taxonomy of cognitive issues related
to dementia as well as the characteristics of patient errors that
result from memory impairments. Then, building on these �ndings
and their implications, we discuss the bene�ts of earables (in con-
junction with smart objects) in modelling activity and intention of
dementia patients and providing practical and contextual memory
cues. We also put forward a guidance system to assist dementia
patients for their daily living, and social connectedness.

2 COGNITION AND DEMENTIA: A PRIMER
We begin by delving into principles of human cognition, cognitive
decline, and its relationship with dementia.

Cognitive decline: Age-associated cognitive decline is the in-
evitable process of normal, non-pathological neurological ageing [16].
From early adulthood, processing (‘thinking’) speed, working mem-
ory, reasoning and executive function all start to decline [5]. The
rate of ‘normal’ brain ageing and the associated cognitive decline
depend onmany factors, including genetics, general health, lifestyle
(e.g., diet), medical disorders, and biological processes such as in-
�ammation. Dementia and mild cognitive impairment (MCI), on
the other hand, are relatively rare in that most older people do not
develop dementia; with current estimates suggesting that less than
one in �ve people over the age of 80 have dementia [24].

Dementia and cognitive decline: Dementia is a syndrome that
is associated with a deterioration of memory and thinking, and an
overall decline of cognitive abilities at a greater pace [20]. Symp-
toms include problems with planning and doing tasks in the right
order, memory loss, mood and personality changes, and confu-
sion. Dementia is diagnosed when these symptoms cause problems
with activities of daily living (ADLs) to the point that a person
cannot live independently. Dementia is not a singular disease but
associated with multiple symptoms of memory loss, thinking and
communication issues. Alzheimer’s disease is the most common
type of dementia, making up 60-75% of the total patients [24].

Dementia and MCI are not a part of normal brain ageing, but
rather, diagnosable conditions. MCI a�ects 5-20% of the population
aged 65 and over [24]. It disrupts the same cognitive functions
a�ected by ‘normal’ brain ageing - processing speed, working mem-
ory, reasoning and executive function - but to a greater extent.
Common functional memory problems reported by people with
MCI include forgetting names, numbers and passwords, misplacing
things, issues with remembering what was said or decided upon,
and keeping track of commitments and intended activities. Thus,
MCI does not fully prevent independent living and some cases are
treatable. One in 6 cases of MCI progress to dementia within a year.

Dementia and cognitive functions: To understand the cogni-
tive functions a�ected by dementia, we o�er a short overview of
cognitive domains and their implications associated with dementia.

Figure 1: Cognitive domains and corresponding functions
associated with dementia and mild cognitive impairment

The Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (American Psychiatric Association, 2013) - the taxonomic
and diagnostic tool used by the American Psychiatric Association
for psychiatric diagnoses - identi�es six cognitive domains associ-
ated with dementia [12] as illustrated in Figure 1.
• Complex attention: This domain covers the maintenance of
attention, selective attention, divided attention and processing
speed. Disruptions to this ability mean that normal tasks take
longer, especially in the presence of competing stimuli.

• Executive functioning: This domain re�ects the functions con-
cerning planning, decision-making, working memory, feedback
utilisation, inhibition and cognitive �exibility. Disruptions to this
ability include di�culties with multi-stage tasks, multi-tasking,
following directions, organising, planning and keeping up with
shifting situations and conversations.

• Learning and memory: This domain covers functions of imme-
diate memory (e.g., repeating a list of digits), semantic memory
(e.g., remembering facts), autobiographical memory (e.g.., remem-
bering personal events), and procedural memory (e.g., recalling
skills required to carry out procedures), as well as recent memory,
which includes free recall (e.g., recalling as many things as possi-
ble), cued recall (e.g., recalling as many things as possible from
a speci�c category) and recognition. Disruptions to this ability
include di�culties recalling recent events, losing track of one’s
own actions, misplacing objects and repeating oneself.

• Language: This domain represents expressive language (i.e., �u-
ency in speech), grammar and syntax, and receptive language (i.e.,
comprehension). Disruptions to this ability include use of wrong
words, grammatical error, word-�nding di�culty and di�culties
with comprehension of spoken or written language.

• Perceptual-motor and visuospatial function: This domain
covers visuoconstructional abilities (e.g., draw, assemble furniture),
perceptuomotor (e.g., insert puzzle piece into appropriate slots),
praxis (e.g., ability to mime gestures) and gnosis (e.g., recognises
faces and colors). Disruptions in this ability can lead to patients
getting lost in familiar places, and �nding it di�cult to use famil-
iar tools and appliances.

• Social cognition: This domain represents the ability to recognise
emotions and to have a theory of mind (e.g., considering another
person’s thoughts and intentions). Disruption to this ability can
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lead to a loss of empathy, loss of judgement and inappropriate
behaviour.

Dementia patients experience disruptions to these cognitive
functions at varying degrees depending on the stage of the disease.
However, the common symptoms, irrespective of the decline of spe-
ci�c cognitive functions in dementia patients, are errors in everyday
functioning. Naturally, understanding and designing interventions
aimed at addressing these symptoms are active research areas. We
consider this aspect of understanding and designing interventions
for the symptoms is where wearables, and in particular earable,
can play a critical role. To this end, in the next section, we delve
into error patterns typically demonstrated by dementia patients as
a structured and systematic understanding of these patterns will
provide us with the proper foundation for applying earable-based
assistive solutions.

3 UNDERSTANDING ERROR PATTERNS OF
DEMENTIA PATIENTS

Areas of cognition that are disrupted by dementia produce well-
known patterns of errors. These include calculation, memory of past
events, prospective memory (e.g., remembering to attend an upcom-
ing appointment) and the sequencing of complex behaviour [15].
In this section, we re�ect on several past studies to systematically
identify a set of error patterns associated with dementia patients.

Action coding for error identi�cation: To understand and sys-
tematically categorise the di�erent errors produced by dementia
patients, researchers have used the action coding system - a method
for coding the actions of patients [28]. Here, A1 transcripts provide
low-level descriptions of a patient’s interaction with the environ-
ment that allowed the errors to be identi�ed. There are four di�erent
types of actions: move, alter, take, and give. A2 transcripts are pro-
cedures within the A1 actions, which can be used to identify errors
within the transition between A1 sub-goals. In other words, the
�ow between di�erent actions can be analysed as well as the degree
of overlap between di�erent actions.

A review of research using the action coding system identi�ed
eight common dementia patient errors that occur during activities
of daily living (ADL), for instance, making a hot drink. The errors -
six types of error and two types of incoherent action [28] included:

(1) Place substitution (e.g., putting tea in cereal)
(2) Object substitution (e.g., apple juice added to the cup of tea)
(3) Drinking anticipation (e.g., drinking tea before it is prepared)
(4) Omission errors (e.g., pouring in water from the kettle before it

boiled)
(5) Instrumental substitutions (e.g., stirring the tea with a knife)
(6) Faulty execution (e.g., not fully opening a sugar packet)

The incoherent actions were:

(1) Independent acts (e.g., picking up a random item and then
putting it down again)

(2) Toying behaviour (e.g., making random gestures with objects
with no apparent aim to the action).

A point of note here is that these actions and their transitions
can be modelled with activity recognition capabilities a�orded by
wearables today. We re�ect on this in the latter part of this paper.

Figure 2: Dementia patient errors in the presence of inter-
ventions/active assistance during activities of daily living

Multi-Level action coding for error identi�cation: Researchers
have also used the Multi Level Action Test (MLAT) - a standardised
test of action disorders - as well as the Naturalistic Action Test
(NAT), which is a shortened version of MLAT [26, 27]. In MLAT, the
patient being assessed is asked to carry out a task, such as making a
slice of toast with jam and butter or wrapping a present. The task is
then completed in one of four conditions marked by di�erent levels
of di�culty. The �rst level is solo basic where only the required
materials are presented. Second is solo-distractors where some func-
tionally related items are also presented next to the required materi-
als. Third is dual-basic where items for a primary task are presented
next to items of another speci�c task (e.g., making a slice of toast
and preparing a cup of tea). Finally, the dual-sear condition involves
some of the materials which are located in di�erent parts of the
room, next to other task-irrelevant items. Research using MLAT
has identi�ed eight common dementia patient errors [26].
(1) Omission, which is failing to perform an action
(2) Sequence error, including anticipation-omission (i.e., skipping a

necessary step to perform another step), reversal (i.e., reversing
the ordering of two steps) and preservation (i.e., performing
the action more times than intended)

(3) Object substitution, which is using the wrong object to perform
an action

(4) Action addition, where an additional unnecessary action is
performed

(5) Gesture substitution, which is performing an action in an un-
common, usually more di�cult way

(6) Grasp-spatial misorientation, which involves holding an object
in an incorrect way

(7) Spatial misorientation, which is sort of error stemming from
misjudgment of size, amount or any similar measure of quantity

(8) Tool omission is using the wrong object to perform an action

Altogether, research �nds that omission errors are themost frequent
error types, followed by sequence errors [9]. Further, the presence of
distractor objects predicatively increases the occurrence of omission
and substitution errors.

Error patterns in the presence of interventions: A more eco-
logically valid study investigated people with dementia performing
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ADLs that they themselves identi�ed as important in their own
kitchens, including making a cup of tea or co�ee [28]. The study
tried to assist patients using �ve levels of prompting: 1) a verbal
prompt of the end goal, 2) a verbal prompt of the sub-goal, 3) a ver-
bal prompt of the action, 4) a verbal prompt of action and pointing,
5) performing the action for them. Based on the results, the study
concluded four broader areas of error: sequencing, �nding things,
operation of appliances, incoherence [28] as depicted in Figure 2.

• Sequencing errors included intrusion, whereby an inappropriate
action is performed from a di�erent activity that prevents the
completion of the current activity; omission, whereby a patient
misses an action that is required for completing the activity
and accomplishing the end goal; repetition, whereby a patient
unnecessarily repeats an action that prevents the completion of
the activity.

• Finding things errors included locating - errors in �nding items
that are out of view - and identifying - selecting items that are in
view.

• Operation of appliances errors were problems of using di�er-
ent appliances such as the kettle or toaster.

• Incoherence errors included toying - performing random ges-
tures with items with no apparent goal - and inactivity - not
performing any action at all.

This systematic analysis of error patterns exhibited by dementia
patients provides the foundation for designing intervention solu-
tions with wearables. However, it also expose the requirement for
intervention beyond on-body augmentations, i.e., instrumentation
of patient environments to o�er situated assistance.

Intention-action Gap: The uniformity of results across patients
has led researchers to argue that the di�erent types of error all
result from a disruption to a cognitive process responsible for goal-
directed behaviour [28]. To this end, Norman et al. proposed the
contention scheduling model - a model of action error - that explains
how this disruption would occur [22]. The model proposes that the
pathological weakening of top-down activation from a supervisory
attentional system means that the contention scheduling system
responsible for choosing action schemas is disrupted and does not
work the way it should. Bottom-up activation externally from envi-
ronmental triggers and internally from associated action schemas
result in actions that do not follow the intended goal. This produces
an intention-action gap in dementia patients.

Implications: We can draw several important implications that
emerged from these studies in the design of memory aid apply-
ing pervasive technologies to support dementia patients. The con-
tention scheduling model essentially exposes the critical challenge,
i.e., to reduce the gap between patient’s intention and correspond-
ing action by modelling patient’s activity and interaction with the
physical world and situational context. This understanding then
further be utilised to design interventions applying implicit or ex-
plicit memory cues. The error patterns highlight the scope of these
challenges quite appropriately.

On activity modelling, it is imperative to understand: 1) pa-
tients’ motion-induced physical activity and gesture, 2) the state
and identity of the physical object that a patient interacts with to

accomplish the intended task, 3) the exact interaction dynamics
concerning the physical object in context.

On intention modelling, it is critical to understand the pa-
tient’s overall objective to derive a plan applying causal reason-
ing grounded on predictive modelling of a patient’s past actions
for the same purpose. This aspect uncovers interesting modelling
challenges and demands thoughtful mitigation strategy both for
directive and corrective guidance.

On designing memory cues, we see opportunities in two dif-
ferent dimensions. First, it is imperative to create implicit memory
cues, e.g., voice prompts, just-in-time visuals, to direct and correct
patients’ actions. Second, we also see opportunities to augment
physical objects with awareness technologies (sensors and actu-
ators) to augment their functional capabilities to participate in a
patient activity in a proactive way.

In the next section, we discuss how we can apply these implica-
tions to design memory aids for dementia patients.

4 EARABLE AS MEMORY AID
In the previous sections, we o�ered a concise overview of cognition
decline, its relationship with dementia, and its implications on de-
mentia patients concerning errors in ADLs. We also identi�ed three
primary challenges in designing memory aids to support demen-
tia patients in mitigating these errors. In this section, we want to
posit that earables, together with smart objects, provide the proper
foundation for designing assistive guidance for dementia patients.
Grounded on contention scheduling model, we learned that reducing
the gap between intended objective and corresponding actions is
one of the critical facets to assist dementia patients. Taking a deeper
view of this facet, we have identi�ed three key dimensions: activity
modelling, intention modelling, and e�ective memory cues that
can collectively mitigate erroneous actions. Earables today come
with rich sensors, including inertial measurement unit (IMU), mi-
crophones, Bluetooth Low Energy (BLE), and in some instances,
optical sensor (PPG), core body temperature sensor, and electroder-
mal activity (EDA) sensor. These sensors and their placement in
the ear collectively o�er us unique opportunities to observe and
understand internal (biomarkers) and external contexts around a
human body and o�er us privacy-preserving, intimate, and sub-
tle feedback capabilities through synthesised speech, music, and
acoustic cues. These capabilities are critical to all three dimensions
we listed before.

Activity modeling: We can recognise upper body movements,
such as head and neck activities [6, 21], facial activities and ex-
pression [18], and whole-body movements, i.e., walking, standing,
falling, etc. [21]. These motion primitives are vital artefacts to un-
derstand a patient’s motion-induced physical activities and gestures.
Note that modelling all these context primitives, especially around
the head, is not possible with other wearables. The acoustic channel
of an earable enables us to understand environment ambience and
audio events [19, 23], thereby modelling a patient’s proxemic, so-
cial context as well patient’s interaction with physical objects [10].
Combining these primitives and their thoughtful synthesis is key in
modelling patient activities and creating digital memories through
encoding for future recall.
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Figure 3: Unique opportunities of earables with context prim-
itives from activity and intention modelling, and acoustic
feedback to design e�ective memory cues

Intention modelling : These context primitives also hold the key
to causal reasoning to understand the patient’s intention. Of course,
a patient can use explicit instructions, such as "I want to make a cup
of tea, or "I want to have my medication" to express her intention.
However, we argue these context primitives are the causal link to
decipher a patient’s intended action. For instance, head orientation
and gaze indicate an activity location where a patient might be
interested; picking a particular object with a distinct soundscape
or moving to a speci�c direction might tell a patient’s intention
to a broader activity. Causal models that could draw inferences
about the expected activity in a particular location can eliminate or
reduce confusion that a dementia patient experiences. We advocate
further research on Bayesian techniques, causal inferences, and
probabilistic models grounded on these context primitives to model
patient’s intentions. In addition, we also see opportunities to model
the errors that a patient encounters to predict potential divergence
from an intended activity. Using di�erent context primitives, an
earable can accurately represent a patient’s situational context and
erroneous actions. We can later exploit these actions to identify an
early indication of a potential mistake.

Memory Cues: Finally, earable o�ers a unique opportunity to
provide memory cues using its acoustic channel. Literature on hu-
man memory demonstrated that auditory stimuli remain in our
sensory registry for at least 4 seconds (compared to 1 second of
visual stimuli). This aspect is very critical for dementia patients
due to their declined cognition, as we have explained before. Given
the privacy-preserving and intimate placement and delivery mech-
anism of earables, synthesised voice prompts, auditory cues, and
music can be designed as memory cues to guide dementia patients.
This feature is a big di�erentiation attribute of earable compared to
other on-body wearables with memory aids for dementia patients.

5 SMART OBJECT AS MEMORY CUES
Earables can o�er implicit memory cues; however, as discussed
earlier, modelling the activity of a dementia patient also demands an
accurate understanding of object interaction. Over the past decade,
we have seen remarkable progress in smart object research in which
everyday objects are instrumentedwith awareness technologies, i.e.,
sensors and actuators, to o�er value-added functionalities beyond
their primary established purposes [7, 8, 13, 17]. We consider these

Figure 4: Two di�erent strategies to guide dementia patients

objects in concert with earables to provide the best foundation for
designing memory aids for dementia patients. We envision physical
objects that can understand their state of use and can proactively
activate to o�er auditory or visual cues (e.g., playing a tone, voice
prompts, or illumination) to guide the activities of dementia patients
and o�er the activity traces that we can leverage to build a better
causal reasoning model to understand a patient’s intention.

6 AMBIENT GUIDANCE SYSTEM
Building on the activity models, intention models, and memory
cues we discussed in the earlier section, here we present a blue-
print of an ambient guidance system combining earables and smart
objects as memory aids for dementia patients. Our system borrows
principle from Situated Flows [14], �rst reported by Kawsar et al. to
design an activity-aware situated guidance system for workers in a
structured workplace. A situated �ow (�ow, for short) is a high-level
declarative abstraction for modelling real-life processes and human
activities. It consists of a set of actions glued together by a plan (a
set of transitions), which de�nes how actions should be performed
to achieve some goal under a set of constraints. In the context of
this work, a situated �ow essentially describes the prescribed steps
of an activity that a patient is interested in accomplishing. These
�ows can be prede�ned or derived from the patients’ past actions
while completing a task.

Our ambient guidance system consists of two components: guid-
ance strategies for deciding which information should be accessible
and when, where, and how it should be presented in the patient’s
immediate environment using earables and smart objects. Situated
�ows represent context-speci�c prescriptions for how activities
and tasks are supposed to be done or how a dementia patient oper-
ates an appliance. Memory cues with earables and smart objects
make it possible to expose activity and task information to a pa-
tient. However, to e�ectively guide a patient, it is not enough to
present a patient with every single step. Practical guidance requires
a guidance strategy that de�nes:
• Which tasks and activities are exposed to a patient.
• When and where guidance information is presented.
• How to present guidance information with memory cues.
• How to cope with situations in which a patient does not follow
the guidance.
In order to cope with such disparate requirements, we propose

two levels of generic guidance strategies.

Directive guidance: Directive guidance (Figure 4(a)) is a strategy
that presents a patient with just-in-time noti�cations (directives)
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of the following activities to be done. To be precise, directives are
generated and presented to a patient before an activity has to be
performed. For example, in a medication context, before and during
taking medicines, it is bene�cial to provide an updated (if any)
instruction to the patient.

Corrective guidance: Corrective guidance (Figure 4(b)) is a strat-
egy that assumes that a patient has a su�cient understanding of
what she has to do and that she does not require constant reminders.
Instead, this strategy only presents a patient with guidance informa-
tion when the system detects signi�cant deviations from the plan.
This aspect is visualized in Figure 4(b): an activity corridor de�nes
how much an actual activity may deviate from the one prescribed
by the activity plan. If an action falls outside the activity corridor,
the system issues corrective feedback to inform patients of the de-
viation and motivate the patient to follow the plan as described.
For example, in a tea-making scenario, if a patient accidentally
picks a salt canister instead of a sugar canister, the guidance system
kicks in with a reminder. The corrective plans can be dynamically
generated from the activity model and current activity state.

One may argue that, instead of earables, the proposed guidance
system can be built with cameras installed in care homes and video
analytics solution. It might be able to provide higher accuracy
of activity and intention modelling, but cannot provide instant,
contextual memory cues as e�ectively as earables. Also, they are
inherently limited to be used in everyday situations due to privacy
invasion, narrow spatial coverage, expensive hardware cost.

7 CONCLUDING REMARKS
Dementia is a threat to our aging population. Cognitive de�cits
and a loss of self-identity of dementia patients fundamentally chal-
lenge our society to react and rethink. Wearables, and in particular
earables, o�er a unique opportunity to contribute to the ongoing
e�ort in addressing this societal challenge. The present article aims
to provide theoretical and methodological insights that provide a
solid foundation for wearable technology. We �rst gave a primer
on dementia, along with a taxonomy of cognitive issues related to
dementia as well as the characteristic patient errors that result from
memory impairments. Then, building on these �ndings and their
implications, we discussed the bene�ts of earable (in conjunction
with smart objects) in modeling activity and intention of dementia
patients and providing practical and contextual memory cues. We
also put forward a guidance system to assist dementia patients.
Finally, we would like to experimentally validate this earable-based
guidance system in multiple ecological valid studies to uncover its
e�cacy in our work’s future avenue.
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ABSTRACT
The COVID-19 pandemic has seriously impacted education and
forced the whole education system to shift to online learning. Such
a transition has been readily made by virtue of today’s Internet
technology and infrastructure, but online learning also has limi-
tations compared to traditional face-to-face lectures. One of the
biggest hurdles is that it is challenging for teachers to instantly
keep track of students’ learning status. In this paper, we envision
earables as an opportunity to automatically estimate learner’s un-
derstanding of learning material for e�ective learning and teaching,
e.g., to pinpoint the part for which learners need to put more e�ort
to understand. To this end, we conduct a small-scale exploratory
study with 8 participants for 24 lectures in total and investigate
learner’s behavioral characteristics that indicate the level of under-
standing. We demonstrate that those behaviors can be captured
from a motion signal on earables. We discuss challenges that need
to be further addressed to realize our vision.
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1 INTRODUCTION
The COVID-19 pandemic has impacted every aspect of our lives.
Among others, education has been seriously a�ected. Schools in
a lot of countries had to close or reduce their face-to-face classes.
According to some reports [1, 2], more than 1 billion students
worldwide could not use their classrooms at the peak of the crisis.
Alternatively, schools are providing access to education using online
learning technology and numerous students are currently educated
remotely all over the world. The pandemic would accelerate the
educational innovation far beyond the advance of online learning
witnessed over the last decade, e.g., Coursera and Udacity.

While the transition to online learning has been readily made
by virtue of today’s Internet technology and infrastructure, online
learning also has limitations compared to traditional face-to-face
lectures. One of the biggest hurdles is that teachers could not in-
stantly keep track of students’ learning status. In pre-recorded video
lectures such as Coursera, teachers can neither observe how stu-
dents engage in lectures, e.g., nonverbal and behavioral cues, nor
interact with them. In live lectures using online conferencing tools
such as Zoom, such observation and interaction can be possible if
students have a camera and a microphone, but it imposes signi�cant
burdens on teachers, especially when there are a number of stu-
dents in a lecture. These limitations hinder teachers from adapting
their lecture materials or teaching methods when necessary. One
typical method is to give a quiz after/during a lecture, but it is also
burdensome to teachers due to the time and e�ort required.

In this paper, we envision earables (also known as smart earbuds)
as an opportunity to automatically estimate learner’s understanding
status of learning materials. Such functionality would enable e�ec-
tive learning and teaching even in online lectures, e.g., to pinpoint
the part for which learners need to put more e�ort to understand.
From an explorative study, we uncover that a learner’s postures
and head motions can be a clue to represent their understanding
of lectures. We present the capability and feasibility of identifying
learners’ understanding levels based on such behavioral patterns.
Then, we discuss opportunities and challenges for realizing the
automatic estimation of understanding in the wild.

2 RELATEDWORK
Previous studies have demonstrated the capability of detecting on-
line learners’ diverse status (e.g., inattention, engagement, frustra-
tion, mind wandering) based on their behavioral patterns [3, 7, 13–
15]. For example, Mota et al. presented a technique to recognize
naturally occurring postures of learners and detect their interest
level based on pressure sensors mounted on a chair [13]. Pham
et al. proposed a multimodal approach to infer learners’ a�ective
and cognitive states such as boredom, confusion, and frustration

https://doi.org/10.1145/3460418.3479323
https://doi.org/10.1145/3460418.3479323
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Figure 1: Bloom’s Taxonomy (the image by the Vanderbilt
University Center for Teaching / CC-BY 1)

by analyzing facial expressions and PPG signals captured from the
front and back cameras of a smartphone [14]. Robal et al. presented
an IntelliEye system that tracks face and mouth use of online learn-
ers to detect in-attention state [15]. It also provides alerts to them
when they are in-attentive to return learners’ attention to a lecture
video. Grafsgaard et al. proposed to predict the engagement and
frustration of students during computer-mediated tutoring based
on �ned-grained facial movements [7]. Bosch et al. proposed an
automatic mind wandering detector by analyzing a set of facial
features from face videos of students [3].

These works commonly imply that online learners’ behaviors
during the lecture carry meaningful information about their learn-
ing status. However, they mostly rely on physiological sensors
and/or computer vision, thereby signi�cantly limiting their practi-
cality in real-life situations, due to the need for using additional,
dedicated devices and privacy concerns. We investigate how learn-
ers’ behaviors, more speci�cally postures and motion gestures, can
be interpreted to represent their understanding while taking an
online lecture. For example, a student might often tilt her head or
look at a monitor vacantly when she does not understand what she
listens to. Similarly, some students might nod their head when they
well follow what is taught. Our initial idea and preliminary study
was presented in [9].

3 APPROACH TO UNDERSTANDING
ESTIMATION

3.1 Modelling Understanding
Measuring howwell students learn and understand lectures is essen-
tial for teachers to provide e�ective teaching. Bloom’s Taxonomy
is a widely-adopted educational framework, which was developed
to assist teachers to plan classes and design valid assessment strate-
gies [4, 10]. The revised version of Bloom’s Taxonomy introduces
six levels of cognitive learning; remembering, understanding, apply-
ing, analyzing, evaluating, and creating [10]. As shown in Figure 1,
each level represents di�erent cognitive skills and learning behav-
iors from the most basic to the more complex levels. For example,
remembering is related to retrieving, recalling, and recognizing
factual information and relevant knowledge, and understanding is
1https://www.�ickr.com/photos/vandycft/29428436431

Table 1: Questionnaire for the level of understanding.
1 I could tell the important keywords/concept of the lecture
2 I could brie�y explain the important keywords/concept of the

lecture
3 I could tell what I newly learned
4 I could explain the summary of the lecture content
5 I could explain the lecture content so that others can understand it

related to interpreting, summarizing, and explaining main ideas and
concepts of learning material. Moving up the levels, they refer to
higher cognitive thoughts and skills. In this study, we adopt the �rst
two levels of Bloom’s Taxonomy, remembering and understanding+,
to model online student’s understanding⇤ of learning material 2.

3.2 Quantifying Understanding Level
To quantify the level of learner’s understanding, we design a ques-
tionnaire by adopting Bloom’s Taxonomy. We note that teachers
are often encouraged to use di�erent types of questions in class and
on assignments and tests based on Bloom’s Taxonomy to stimulate
and assess students’ cognitive thinking. Example questions that
can be used are as follows.

• How would you de�ne ... ?
• What was the main idea ... ?
• Can you write a brief outline ... ?
• Can you provide an example of ... ?

Inspired by these, we design the questionnaire with �ve statements
as shown in Table 1. We construct the �rst two statements in the
table for the concept of remembering and the rest three for the
concept of understanding+. For each statement, respondents are
asked to rate how much they agree with the statement using a
5-point Likert scale (1 to 5) (5 - “strongly agree”, 4 – “agree”, 3 –
“neutral”, 2 – “disagree”, 1 – “strongly disagree”).

We use Likert scale answers that can be easily collected and
quanti�ed regardless of lecture types and contents. Asking detailed
answers speci�c to the lecture content might be better to assess
respondent’s understanding level more accurately, but it imposes
much burden on respondents to answer and assessors. Investigating
the e�ect of di�erent types of questions will be our future work.

As a granularity of understanding level estimation, we target a
lecture slide as a unit, i.e., estimating the student’s understanding
level for each lecture slide. A slide often conveys a single topic and
content, and thus it is naturally expected by teachers to be mapped
the level of learner’s understanding. Other lecture units, e.g., an
explanation of a speci�c term in the slide or a whole lecture, can
also be considered for di�erent purposes. We leave it future work.

3.3 Why Motion Sensing on Earables?
A key decision to be made for the design of a sensing solution is
to determine devices and sensors to be used. Many existing meth-
ods often rely on computer vision using a user-facing camera to
detect learner’s behaviors, thereby signi�cantly limiting their appli-
cability in real-life situations and raising privacy concerns. Unlike
them, we focus on motion signals (accelerometer and gyroscope)

2Understanding+ refers to the speci�c level of Bloom’s Taxonomy. We use
understanding⇤ as the term representing both remembering and understanding of
the taxonomy. In the rest of the paper, understanding refers to understanding⇤ , unless
otherwise noted.
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on earable devices. Our choice o�ers several bene�ts. First, accord-
ing to our study in the following section, postures and gestures
relevant to understanding are mostly made around the head and
upper body, which could be captured by earable devices. Second,
processing motion signal is computationally e�cient and privacy
preserving compared to other methods, especially computer vi-
sion. Last but not least, earables are widely used when students
take online lectures and inertial measurement unit (IMU) for mo-
tion signal is already employed on most smart earbuds. Thus, an
earbud-integrated motion-sensing solution would be easily adopted
without requiring additional devices.

4 BEHAVIORAL CUES FOR UNDERSTANDING
ESTIMATION

4.1 DATA COLLECTION
For an in-depth study, we exploit a dataset including 8 participants
and 24 online lectures in total. The participants (4 males and 4
females) were recruited from a university campus, and they were
graduate and undergraduate students in Computer Science and
Engineering. Their ages were between 23-26 (mean: 24.13, SD: 3.75).
Each participant was compensated with a gift card equivalent to
USD 18. The study was approved by the Institutional Review Board
of KOREATECH (No. 20022502).

Table 2 shows the online lectures we used for the study. We
choose four lectures on the course of Arti�cial Intelligence Basic,
provided by K-MOOC, a Korean MOOC established in 2015. All the
participants have a general interest in the topic of AI, but did not
take lectures with the same content as the lectures in our study.

Each participant was invited to the lab for data collection. We
explained the purpose and procedure of the study and obtained
informed consent. Based on each participant’s prior knowledge and
level on AI and ML, we chose three di�erent lectures that cover a
range of di�culty levels. During the lecture, the participants were
asked to wear the eSense earbuds [8, 12] for sensor data collection.
They were also provided with printed lecture materials and a pen
to make them feel that they take lectures as usual.

During the lecture, we collected three types of data from the
participants: (1) 3-axis accelerometer and 3-axis gyroscope data
sampled at 32 Hz from eSense to analyze their behaviors while
taking online lectures, (2) a video stream using a participant-facing
webcam as ground truth of their behaviors, and (3) questionnaire
(Table 1) answers on every slide as ground truth of their understand-
ing. The participants completed the questionnaire after �nishing
each lecture. Between lectures, they took a break of 5 minutes. From
the responses to the questionnaire, we obtain a �nal understand-
ing score between 5 and 25 for a lecture slide, by summing all the
scores from �ve answers, with 25 indicating the highest possible
understanding score.

4.2 Natural Behaviors during Online Lectures
We extract a set of behaviors that learners naturally make during
online lectures. For the analysis, the researchers transcribed and
coded the recorded videos with observable, repetitive behaviors that
the participants performed while they were watching the lectures.

Figure 2 shows the list of behaviors we observed in the videos
(See the left side of the �gure); we excluded infrequently observed

behaviors. We group them into three categories; posture, body/head
motion, and facial motion. As expected, learners’ macroscopic, whole-
body movements were quite limited during online lectures, mostly
sitting and watching the video. However, interestingly, a variety
of their microscopic movements were observed, especially around
the head and upper body. From this behavioral characteristic, we
believe that our choice of earbuds as a sensing device has a great
potential to capture learners’ behaviors on online lectures.

4.3 Understanding-relevant Behaviors
As a next step, we identify key behaviors that can be used as clues
to estimate understanding level. To understand the impact of our
observed behaviors, we assess the statistical association between
a) the statistic of observed behaviors and b) the reported scores of
understanding in the questionnaire. For the statistic of the observed
behaviors, we annotate the start and end time of behavior events
and compute the statistical features on every slide. For the behav-
iors that last for a certain time duration, we measure the duration
of every segments of behaviors and normalize it by dividing by
the slide duration. Note that we additionally compute the total,
average and standard deviation for the posture behaviors that last
longer than 1 second. For the behaviors involving a brief motion,
we count the number of events in every slide and also normalize
it with the slide duration. We use Spearman’s rank correlation for
the correlation analysis, which is used to assess the relationship
between two variables measured on at least an ordinal scale [11].

Figure 2 shows the correlation coe�cients of the behavior sta-
tistics and the reported understanding scores (See the right side).
The results show two important �ndings. First, there are several
behavioral patterns that imply a moderate relationship to the level
of understanding, e.g., over 0.3 or under -0.3. This implies the po-
tential of estimating a learner’s understanding from the observation
of behavioral patterns. Interestingly, after the survey, we heard
from our participants some comments that support our analysis.
For example, P7 reported that he frequently looked at the lecture
material when he could not understand well. Accordingly, he fre-
quently lowered and raised the head. Such patterns are observed
through the coe�cient analysis, e.g., the negative correlation of the
count of brie�y gazing at a monitor, lowering the head, and raising
the head. P6 mentioned that he often did neck rolls and changed his
sitting posture when he could not understand well. These behav-
ioral patterns are revealed in the negative correlation of the count
of moving the neck and brie�y moving the body.

Second, the relationship between behavioral patterns and the
level of understanding di�ers depending on the individual, showing
the need for personalized estimation. For example, �ve behaviors,
i.e., keeping looking down a desk, keeping gazing at a monitor, brie�y
gazing at a monitor, lowering the head, and nodding, show corre-
lation coe�cients larger than 0.3 or smaller than –0.3 for P7, but
they do not for P4. P4 has only one behavior, moving the neck, that
shows a correlation coe�cient larger than 0.3.

4.4 Feasibility of Understanding Estimation
To study the feasibility of understanding level estimation, we build
regression models to predict the understanding score using the
aforementioned behavioral features. Since the impact of behavioral
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Table 2: Online lectures used in data collection.
Course Topics Duration # of slides # of participants

Arti�cial Intelligence Basic

Introduction to Reinforcement Learning 34 min. 13 8
Markov Process 22 min. 10 8

Markov Decision Process 39 min. 13 7
Heuristic Search 22 min. 17 1

Figure 2: Behavior list and correlation coe�cients of behavior features and understanding score (* indicates p-value < 0.05)

Figure 3: Prediction error for overall understanding scores

patterns is di�erent depending on the individual, we train a separate
regression model for each participant. We adopt linear regression.
To train the model, we use the features with top-3 correlation
coe�cient values for each participant. We apply leave-one-slide-
out cross validation.

Figure 3 shows the prediction errors with two metrics, Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). Our
estimation model achieves 3.04 of the average MAE and 3.77 of
the average RMSE across the participants; the target value is the
total understanding level score and its range is from 5 to 25. For
comparison, we use a baseline that takes an average understanding
score as a prediction. The average MAE and RMSE of the baseline
are 3.35 and 3.96, respectively. Our model shows the better estima-
tion results for both metrics. We additionally compare the results
of SVM regression with di�erent types of kernels, i.e., linear and
RBF, using top-3 features. They show slightly larger errors for both
metrics, around 3.2 and 4 of MAE and RMSE, respectively.

We can also observe the variation of prediction errors depending
on the participant. For example, P1, P3 and P7 show around 2 of

MAE while P2 and P8 show 3.9 and 6.2 of MAE, respectively. We
�nd that those who show relatively high errors have the smaller
number of features with larger coe�cient values. Also, their range
of understanding scores is relatively larger across the lecture slides
than others. We discuss this issue in the following section.

5 OPPORTUNITIES AND CHALLENGES
Our explorative study shows that the automatic estimation of
learner’s understanding is promising from identifying understanding-
relevant behaviors and mapping them to the understanding score.
In this section, we discuss opportunities and challenges for realizing
the automatic estimation of understanding in the wild.

5.1 Behavior Detection using Earables
A key for the automatic estimation of understanding is to detect
understanding-relevant behaviors at runtime. Here, we explore
detection techniques for these behaviors using earable devices and
their performance.

As an initial attempt, we choose �ve behaviors as primitive
contexts for automatic estimation of learner’s understanding level:
two postures (looking down a desk and gazing at a monitor) and
three motion gestures (lowering the head, raising the head, and
nodding). These behaviors show a meaningful relationship with the
understanding score, i.e., correlation coe�cients larger than 0.3 or
smaller than -0.3 in many participants and also observed relatively
more frequently than other behaviors throughout the lectures. Note
that, by detecting two postures, we can derive all of the posture
category features in Figure 2.
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(a) IMU axes of left earbud (b) Looking down a desk

(c) Gazing at a monitor (d) Lowering the head

(e) Raising the head (f) Nodding

Figure 4: Motion signal of di�erent postures and gestures

Detection technique: Postures and gestures have distinctive
characteristics of motion signal patterns. Figure 4 shows the ac-
celerometer and gyroscope data for some examples. While signals
show little change over time while a user is taking a posture (e.g.,
Figure 4b and 4c), the �uctuation of signals can be easily observed in
motion gestures (e.g., Figure 4d, 4e, and 4f). Inspired by such a �nd-
ing, we devise a two-stage sensing pipeline to detect understanding-
relevant behaviors. In the �rst stage, the pipeline quanti�es the
degree of movement and identi�es whether a given signal segment
is from a posture or a gesture. Then, in the second stage, it employs
two machine learning models, one for posture detection and the
other for gesture detection, and selectively uses them based on the
output of the �rst stage. For each task, posture or gesture detection,
a single model is built for all the users.

Movement detection: We take one-second gyroscope samples
as input and quanti�es the movement by calculating the signal
variation. More speci�cally, we compute the magnitude value of
every 3-axis gyroscope sample and calculate the variance of 32
values. The higher variance represents the higher degree of move-
ment. Then, we distinguish between a posture and a gesture using
a threshold that we empirically set using our dataset.

(a) Result with strati�ed 5-fold CV

(b) Result with leave-one-subject-out CV

Figure 5: Recognition performance

Machine learning models: One of the challenges in distin-
guishing between gazing at monitor and looking down a desk is that
learners mostly remain stationary when they make these behaviors.
Accordingly, we can easily expect that traditional activity pipelines
for smartphones [16] would not work well because they are mostly
designed to utilize the magnitude stream as input to address the
arbitrary position of smartphones. On the contrary, the relative
direction of the earbuds to a person’s head is mostly �xed. Thus, we
can leverage the absolute orientation of a device. We empirically
found that X-axis and Z-axis show a strong discrimination power
to identify understanding-relevant behaviors.

We segment accelerometer and gyroscope data streams into
one second-frame. Then, we extract time and frequency-domain
features [5] from X and Z streams separately without taking the
magnitude and gather the features for the classi�cation.We use PCA
to reduce the dimensionality of the features and Support Vector
Machine (SVM) as a classi�er; we �ne-tuned hyper-parameters
using our dataset. Two machine learning models have the same
architecture, but di�erent target labels. The posture model is to
separate looking down a desk and gazing at a monitor, and the
gesture model is to separate lowering the head, raising the head,
nodding, and others. We do not include the others label in the
posture model because other postures are hardly observed in our
data collection setup. However, we believe our model can be easily
extended to cover other postures if needed.

Results and implications: We investigate the recognition per-
formance of our detection technique. We conduct a strati�ed 5-fold
cross-validation and report the �1 score as a performance metric.
The experimental results show that our machine learning mod-
els detect understanding-relevant behaviors accurately. Figure 5a
show the �1 score of posture and gesture models, respectively. The
posture model shows 0.96 of �1 score for both postures, looking
down a desk and gazing at a monitor. It validates our choice of
using axis-speci�c streams as input, instead of the magnitude. The
gesture model also shows reasonable performance. The �1 scores
of two gestures, lowering and raising the head, are 0.92 and 0.90,
respectively. However, the �1 scores of nodding and others are rel-
atively lower, 0.76 for both. This was mainly because the gesture
model sometimes confuses the events of nodding and others.
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5.2 Variation of Behavioral Patterns
One of the challenges for deploying the automatic estimation of
understanding to end-users is the variety of behavioral patterns.
First, our participants have a di�erent set of behaviors that show
a meaningful relationship with their understanding. For example,
while the average duration of the looking down a desk posture shows
a high correlation for P5, P6, and P7, but has little relationship for
P1, P2, and P4.

Second, the signal patterns of behaviors are also di�erent depend-
ing on the participant. To investigate how our posture and gesture
models work on a new user, we measure their performance with
a leave-one-subject-out validation (Figure 5b). The results show
that the posture model still achieves high accuracy, i.e., 0.95 of �1
score. The gesture model also shows the reasonable performance
for lowering and raising the head, i.e., 0.91 and 0.90, respectively,
which are expected to have little variation across the participants.
However, the performance of nodding and others largely decreases,
i.e., 0.29 and 0.65 of �1 score. Observing the collected data, we could
see that the participants often did nodding and other behaviors
di�erently, e.g., in terms of direction, count, and strength.

These two �ndings imply the need for personalized models, i.e.,
detection model for behavior recognition and regression model for
estimating the understanding score. We believe we can develop
personalized models using a small amount of the end-user’s data
with online learning techniques. We leave it as future work.

5.3 Incorporating Additional Sensors
This study currently explores the feasibility of using behavioral
features from earables’ IMU to estimate students’ understanding.
It would be possible to incorporate additional sensors for more
accurate and robust estimation. Some previous works utilize phys-
iological sensors such as PPG and EDA to detect engagement or
attention state of students [6]. While they are di�erent from our
target, understanding level, these might be related to each other,
considering that engagement in lectures might positively a�ect
the understanding of the lectures. We will further investigate the
potential of adopting sensor fusion techniques to use physiological
features from PPG and EDA sensors. A further in-depth study will
also be necessary to analyze the relationship between the under-
standing level and the engagement or attention state.

5.4 Application Landscape
We envision that the automatic estimation of learner’s understand-
ing will provide signi�cant bene�ts in online lectures.

Our proposed technique could be used to assist teachers by
providing student’s understanding status. In many online lectures,
especially the pre-recorded video lectures, it is almost infeasible
for teachers to have detailed real-time feedback from students,
thereby making it di�cult to modify and enhance their lectures;
even possible, the feedback is often at a high, coarse-grained level.
We envision that our solution can monitor student’s understanding
status, gather this information, and automatically spot parts in
online lectures which student perceive di�cult to understand.

Our solution could also help students by calling their attention
when they do not understand the lecture content well. When our
solution detects such moments, it could send a noti�cation message

to the students, e.g., “how about watching this part again if you
do not understand well?”. It might also be possible to provide the
students with a summary of di�cult parts after the lecture in order
to help the student re�ect on the lecture.

6 CONCLUSION
This work is our initial step towards a vision to utilize earables as an
opportunity to automatically estimate learner’s understanding on
online lectures. In this explorative study, we observe some behaviors
that could be used as clues to estimate the understanding level, and
investigate the feasibility of understanding estimation using these
behaviors. To realize the automatic estimation of understanding in
the wild, we have a range of challenges to address, which will be
future avenues of our work.
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ABSTRACT
Bad air quality and insu�cient ventilation can have severe impacts
on personal health. We present AirCase, a smart earable charging
case that measures CO2, volatile organic compounds, humidity,
air pressure, temperature, and light intensity. The case powers
both the air quality system and the earables. We also propose a
model-driven air quality soundscape soni�cation strategy based on
the audio capabilities of the earables. AirCase detects conditions
unsuitable for measuring air quality (e.g., in pocket) in an o�ce
environment at 98.2 % accuracy with a simple classi�er based on a
single feature. We identi�ed light intensity as the primary indicator
to recognize occlusion. In contrast, the speed of the micro ventilator
used to increase air�ow inside the case did not o�er any predictive
value. In the future, we hope to see more researchers explore the
hidden potential of the new platform.

CCS CONCEPTS
• Human-centered computing ! Ubiquitous and mobile de-
vices.
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earables; hearables; earphones; charging case; air quality monitor-
ing; pollution
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1 INTRODUCTION
Earables have been heavily explored as a novel, ear-worn platform
with personal tracking capabilities. Some examples are monitoring
health-related parameters such as respiration [18] or brain activity
[9]; or activity recognition to detect daytime activities [14] or eating
episodes [4]. The platform also serves as the foundation of new
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interaction paradigms [25, 28]. In research, the focus, therefore,
is on the device worn on the ear itself. State-of-the-art market-
available earables are usually wireless and sold together with a
charging case that contains much larger batteries compared to
the earbuds1. Today, these charging cases are solely intended to
provide power to the earables when the user is not wearing them,
so they are recharged for the next use. However, as the user always
carries the case with them, it creates an opportunity to implement
additional sensors for mobile sensing. As the charging case may
be placed, e.g., next to a person on the table, it seems particularly
suitable for mobile environmental sensing scenarios.

To initially make the earable community aware of the hidden
potential of the earable charging case and to spark novel ideas, we
built a �rst prototype that follows the new paradigm. The charging
case measures air quality and shares it back to the user by a sound-
scape soni�cation strategy. We conducted a data collection study
in three di�erent conditions (non-occluded + bright, non-occluded
+ dark, and occluded + dark) to gather 150 minutes of air quality
data (30 x 5 minutes). Based on the collected data, we trained a sim-
ple classi�er and performed 5-fold-cross-validation yielding 98.2 %
overall accuracy.

In sum, our three main contributions are:
• an o�-the-shelf charging cases with custom electronics to
measure CO2, volatile organic compounds (VOC), humidity,
air pressure, temperature, and the light intensity, and which
includes a micro ventilator for improved air�ow in AirCase

• a model-based soundscape soni�cation strategy of air quality
on earables

• an occlusion detection classi�er to avoid measuring air qual-
ity when the device is, e.g., in the pocket

2 BACKGROUND AND RELATEDWORK
Air quality and human life are closely coupled. For example, high
humidity and temperature a�ect the level of human comfort [23]
and high concentrations of VOC and CO2 in the air even harm
human health [10, 15]. Consequently, insu�cient room ventilation
rates in o�ces have severe adversarial e�ects such as higher rates
of respiratory infections and overall more short-term sick leaves
[22]. Therefore, personal mobile air quality measurement devices
are expected to help the individual live a healthier life.

There have already been some mobile air quality monitoring
devices in the �eld of ubiquitous computing. For example, WearAir
[12] installed a VOC sensor and light-emitting diodes (LEDs) to a
T-shirt. The LEDs indicate the air quality around the user measured
by the VOC sensor, which informs people about the air quality

1https://www.apple.com/airpods-pro/
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[a] [b] [c] [d]

Figure 1: Di�erent views of AirCase. [a] front side of the device showing the light sensor (left) and micro-ventilator (right);
[b] open lid showing the earables placed inside the case for charging; [c] opened case showing the charging circuit (left) and
custom PCB connected to sensors (right); [d] schematic drawing of the sensing tier.

straightforward. Jiang et al. [11] proposed a device equipped with
CO2, humidity, temperature, and light sensors, which can be at-
tached on the backpack or clothes of the user. It performs indoor
localization based on WiFi signals and can project the air quality
onto the correct room. In addition to carrying sensor nodes directly
on the human, there is also research focusing on vehicle-mounted
air quality sensor nodes [3, 24]. The abundant space on vehicles
generally leaves room for a larger number of more accurate sensors
to be integrated than with wearables.

Related work in earable computing embedded environmental
sensors directly inside the ear-worn device, but not for the primary
purpose of air quality monitoring. E.g., to prevent heat strokes,
temperature and humidity sensors inside earables can measure the
body temperature, and evaporation of the wearer [7, 13]. Though
air pressure sensors have been embedded inside earables, their
sole purpose was to serve as an underlying sensing principle for
interaction such as face gestures [1] or input by the muscles inside
the ear directly [17].

To the best of our knowledge, no air quality sensors were embed-
ded into earables or their related devices. Therefore, we proposed
AirCase (Figure 1), an unobtrusive, augmented earphone charging
case with air quality sensing for daily life.

3 AIRCASE
AirCase builds upon an o�-the-shelf earbud charging case that we
modi�ed by adding custom electronics. Air quality soni�cation is
presented to the user by the respective earables of the case. Oc-
clusion detection relies on a simple machine learning classi�er.
Figure 2 gives an overview of the system components: in terms
of information �ow, multiple sensors are mounted to the MCU
that runs an occlusion classi�er. Measurements are then emitted
via BLE to the mobile phone for recording and further processing,
including soni�cation. From the aspect of energy �ow, the battery
of the charging case serves not only the earbuds but also the MCU
and its sensors as well as the ventilation.

3.1 Hardware
Figure 1 shows the structure of AirCase. The foundation is the
HolyHighr earphones charging case (regular wireless Bluetooth
earbuds with microphones and a push-button on each side, see

Figure 1 [b]). A light sensor (SHARPr GA1A1S202WP) is installed
on the front side of AirCase, aiming to detect the light intensity
for the occlusion recognition. In addition, a ventilator (SUNONr
UB393-500) is equipped next to the light sensor, which serves not
only the occlusion recognition (measuring its rotation speed) but
also the ventilation of AirCase, as the sensors located inside it must
re�ect the air quality of the surroundings. To improve ventilation,
we have also designed holes on the back and sides of AirCase. To
measure air quality, we placed an air quality sensor (BOSCHr
BME680) to sense humidity, air pressure, temperature, and volatile
organic compounds (VOC). As the BME680 only returns VOC as
resistance, we obtain the indexed air quality (IAQ) using the Bosch
Sensortec Environmental Cluster (BSEC) library based on VOC and
takes temperature and humidity into account. This allows us to
assign VOC air quality based on the reference IAQ values provided
by Bosch. In addition, we added a CO2 sensor (WINSENr MH-
Z19B). We utilized the battery of the charging case as the power
supply of the aforementioned sensors and the micro-controller unit
(MCU), an ESP32. The �rmware is written in Arduino. For easier
assembly, we designed a custom ESP32-based printed circuit board
(PCB) that sits tightly in the case and simpli�es cable management
(see Figure 1 [c], right). The rough overhead of AirCase is listed
in Table 1. We remove the screws from the case and 3D-print a
new bottom lid which is slightly thicker to account for the space
required for the sensors. To emit, record, and analyze the acquired
signals, we developed an Android application to communicate with

CO! sensor

Ventilator

Air quality sensor 

Light sensor

Mobile
phone

Ventilation
Battery

Earbud

MCU

Classifier

BLESensing tier
AirCase

I!C

Sonification

Figure 2: Frame of AirCase system. Red parts present the
energy �ow and green parts indicate the information �ow.
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the ESP32 via Bluetooth Low Energy (BLE). The measurements are
sampled and sent every �ve seconds (0.2 Hz). Figure 1 [d] shows
the schematic drawing of AirCase.

In the extreme case, i.e. with all sensors active and constantly
sending data via Bluetooth, the AirCase can operate continuously
for 5 hours. Thanks to the occlusion detection (see subsection 3.3),
the AirCase will run for more than 5 hours, depending on the state
the AirCase is in, as the MCU stops collecting and sending data to
a certain extent in occlusion.

Table 1: System overhead.

Hardware Cost
Earbud + charging case 40 €
Light sensor 3 €
Ventilator 15 €
Air quality sensor 15 €
CO2 sensor 25 €
Customized PCB 1 €
Summation 99 €

3.2 Soundscape Soni�cation Strategy
Earables o�er a design space for rich and immersive soundscape
experiences. Soni�cation, on the other hand, describes the trans-
formation of data to sound. In AirCase, we designed a two-tiered
soundscape soni�cation strategy: a background tier, indicating tem-
perature as well as humidity referring to human comfort and an
alerting tier to inform the user about potentially harmful air quality
with respect to the level of VOC (measured as IAQ) and CO2.

Background Tier. To combine humidity and temperature into a
single measure, we de�ned themodi�ed temperature)< as proposed
by Steadman [21]:

)< = 1.07) + 0.24 � 2.7 ,

where ) indicates the measured temperature and

4 = 6.105
�

100
exp

✓
17.27)

237.27 +)

◆

with � denoting the humidity. Based on a study by Tanabe and
Kimura [23], we de�ne the neutral temperature )= with respect to
the modi�ed temperature by averaging the neutral temperature for
di�erent groups of users as:

)= = 25.7�⇠ .

We use the absolute di�erence between)< and)= to control the vol-
ume of the music playing on the earables. The greater the absolute
di�erence is, the higher the volume is.

Alerting Tier. The alerting tier informs the user about deviations
in air quality that have a signi�cant impact on human health, i.e.,
VOC and CO2. The alarm starts when CO2 value exceeds 1000 ppm
[10] or VOC values above 100 IAQ (described as “little bad air
quality” by the manufacturer of the VOC sensor [6]). The higher
the level of CO2 and VOC are, the higher the volume of the alerts
will be.
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Figure 3: Soni�cation model of AirCase. Background tier
gives the user feedback about comfort and the alerting tier
warns the user about potentially harmful air quality.

Soni�cation Model. Wolf et al. [26] proposed a model for data-
driven soni�cation using soundscapes that we apply to our use case.
Figure 3 shows our approach. For the background tier, the volume
of background music changes according to changes of the modi�ed
temperature at each time step. For the alerting tier, VOC and CO2
activate the respective alerts (i.e., �1 and �2). 08,C denote the alarm
in group �8 at time step C . In our implementation, we choose C as
one minute and apply a heavy breathing and coughing sound to
warn about CO2 and VOC levels, respectively. The user can choose
background music according to their preferences as we manipulate
the system settings directly.

3.3 Occlusion Recognition
When AirCase is occluded (e.g., while in the bag or pocket of the
wearer), the readings of the sensors are not informative as they do
not re�ect the air quality of the surroundings. Keeping the measure-
ments active under such conditions is also a waste of energy. The
main di�erences between occlusion and an open environment are
light and ventilation, as the occlusion blocks the light and impedes
the air�ow. Thus, we were interested to realize occlusion recog-
nition based on the measurements of light intensity and rotation
speed of the ventilator, which we initially explored in our paper.

Dataset. We collected 150 minutes overall in 15 occluded and
15 non-occluded conditions at our lab (5 minutes recording each).
Occlusions include placing AirCase in pockets (N=5), bags (N=5),
and cabinets (N=5) of �ve di�erent users. We sampled data at ten
di�erent rooms at di�erent times (1 / 3 at night and 2 / 3 during the
day) to change light settings. As wewant to evaluate occlusionmore
robustly on a per-minute basis, we applied a one-minute sliding
window on every 5-minute recording (step size 5 seconds).

Feature Extraction. Before classifying the samples, we performed
automated feature extraction with tsfresh. We apply it to the light
intensity and ventilator speed time series (each series lasts 1 minute)
and �lter out the most relevant features associated with labels based
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on the false discovery rate [5]. This resulted in no relevant features
based on the speed of the ventilator. This was also con�rmed by
training classi�ers on the features of the ventilator that did no
perform better than random (see Table 2). Looking at the remaining

Table 2: Occlusion detection using ventilator speed.

Classi�er Precision Recall F1 Accuracy
SVM 71.7% 99.6% 83.4% 81.2%
Neural Network 69.0% 89.0% 78.0% 75.0%
Random Forest 69.0% 7.4% 13.4% 51.5%

features quickly revealed that the absolute light intensity is the sole
predictor of occlusion in our dataset. The feature that represented
this best was the absolute sum of light intensity of the sample.
Figure 4 [a] shows the logarithmic of B; denoting the sum of light
intensity in sliding windows of all recordings, while [b] shows
the logarithmic of BE , the sum values of ventilator speed in sliding
windows. It can be well observed that the light is distinctive to
predict the occluded and non-occluded conditions, whereas the
ventilator speed does not change consistently across them.

Threshold Classi�er. To avoid having to select the optimal thresh-
old by hand, we �t a support vector machine classi�er (SVM) using
sklearn. We perform 5-fold-cross-validation and avoid that samples
from the same recording are in the training and validation set at the
same time using three di�erent classi�ers i.e. SVM, neural network,
and random forest. After training and validation, we acquire the
result described in Table 3.

Results. From Table 3 we �nd that a SVM achieves an acceptable
classi�cation accuracy in our o�ce environment for occlusion de-
tection using the light sensor measurements solely. Therefore, we
can turn o� the sensors to save energy when the device is occluded.
As the ventilator’s speed does not improve occlusion recognition,
we can also shut it down.

Table 3: Performance of the AirCase occlusion detection.

Classi�er Precision Recall F1 Accuracy
SVM 96.8% 100% 98.4% 98.2%
Neural Network 91.0% 100% 95.3% 95.0%
Random Forest 98.5% 69.2% 81.3% 84.4%

4 DISCUSSION
We have demonstrated how an earable charging case can be
equipped with air quality sensing, introduced a soundscape soni�-
cation strategy, and preliminary showed the possibility to detect
occlusions.

4.1 Limitations
Currently, we only evaluated the occlusion detection of AirCase
on a limited set of data samples acquired from the same building. It
remains to be investigated how well AirCase works under real-life
settings. For example, additional sensors such as a light spectrum

sensor may be required. Possibly, the user could de�ne this thresh-
old for occlusion detection based on personal preference, or AirCase
could activate depending on the current activity of the user (e.g.,
detecting where the device is carried [2]).

Our soni�cation strategy remains to be evaluated with the users.
Also, we would like to emphasize that AirCase is currently much

larger than necessary. The BME680 and GA1A1S202WP sensors
both only have a footprint of  3⇥ 3⇥ 1<<3 (l ⇥w ⇥ h). Therefore,
they could be well integrated directly onto the charging case’s
printed circuit board.

4.2 Air Quality Feedback
At the moment, information about air quality is presented as raw
values inside the app or based on our soni�cation strategy that
remains to be evaluated with the user. Another feedback mecha-
nism could present air quality through light directly on the earable
that makes the surrounding people in public spaces aware of the
information obtained by the case [8]. Of course, the case could also
show the air quality directly.

4.3 Smart Charging Cases
Beyond the smart earable charging case with air quality monitoring
presented in our paper, we share three other possible research and
application paths.

Health Tracking. Compared to a phone, an earable charging case
may be kept inside the pocket during usage. Therefore, it could serve
as a better sensing platform for continuous health-related parameter
tracking. For example, it could predict the energy expenditure and
count the steps of the user, as the hip location proved to be most
reliable in past work [19]. Also, the surface area of the charging case
presents opportunities for sensors. A handheld Electrocardiography
measuring device could place its conductive metal electrodes on
the outside of the case (e.g., similar to AliveCor Kardia Mobile).

Subtle Gestures. Subtle interaction that requires low e�ort and
can be hidden from others continues to receive attention in HCI
research and was recently systematically investigated [16]. We
imagine that a smart charging case carried in the pocket could
be an enabler of such hidden interactions. For example, Saponas
et al. [20] and Wu et al. [27] presented pocket-based input based
on textile sensors. Capacitive sensors embedded on the outside of a
charging case could allow similar interactions.

Item Tracking. Wu et al. [27] introduced a method to recognize
objects placed inside the pocket of the user (e.g., earbuds charging
case). Similarly, the charging case itself could be equipped with
sensors to make it aware of other items inside the pocket. The case
could then remind the user about forgotten objects.

5 CONCLUSION
Earable charging cases o�er space and large amounts of power
for new types of use cases. We explored the potential of the new
platform as an unobtrusive mobile air quality sensor station for
daily usage. AirCase builds upon a simple threshold-based approach
by measuring light intensity to detect occlusions of the case. The
speed of the micro-ventilator as an indirect measure of air�ow
did not have any predictive value. Additionally, AirCase uses the
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Figure 4: Logarithmic sum of values in sliding windows. [a] logarithmic sum values of light intensity, [b] logarithmic sum
values of ventilator speed.

earables’ audio capabilities to inform the wearer about air quality
based on a model-driven soundscape soni�cation strategy.

Future Work. We are interested in looking at other strategies for
occlusion detection. Moreover, we are looking forward to other
work that makes use of the earable charging case as a sensory
platform.
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ABSTRACT
Bruxism is a disorder characterised by teeth grinding and clenching,
and many bruxism su�erers are not aware of this disorder until
their dental health professional notices permanent teethwear. Stress
and anxiety are often listed among contributing factors impacting
bruxism exacerbation, which may explain why the COVID-19 pan-
demic gave rise to a bruxism epidemic. It is essential to develop
tools allowing for the early diagnosis of bruxism in an unobtrusive
manner. This work explores the feasibility of detecting bruxism-
related events using earables in a mimicked in-the-wild setting.
Using inertial measurement unit for data collection, we utilise tradi-
tional machine learning for teeth grinding and clenching detection.
We observe superior performance of models based on gyroscope
data, achieving an 88% and 66% accuracy on grinding and clench-
ing activities, respectively, in a controlled environment, and 76%
and 73% on grinding and clenching, respectively, in an in-the-wild
environment.
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1 INTRODUCTION
In the recent years, wireless earphones with built-in sensors, a.k.a.
earables, have been gaining popularity — earphones are a com-
modity item providing established functionality, with support for
privacy-preserving interaction by allowing the users to access in-
formation hands-free in a socially acceptable way, and, most impor-
tantly, have unique placement, allowing for numerous applications
beyond playing music [10]. Comparing to other common areas of a
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human body for wearables placement (e.g. wrist), the ear is signif-
icantly more stationary, meaning that the collected signal is less
susceptible to the external noise and motion artifacts, while also
allowing to capture head and jaw movements, in addition to the
activity in the rest of the body [10]. Due to these unique advantages
o�ered by earable platforms, they are widely explored for health
applications.

Drawing on the ability of wearables to capture jaw movements,
we were interested in exploring the feasibility of using earables for
detection of a movement disorder, characterised by teeth grinding
and clenching, called bruxism. Bruxism a�ects around 8–13% of the
adult population [2], and can cause numerous problems, a�ecting
patient’s teeth’ health, causing headaches and disorders of the
temporomandibular joint (TMJ). However, people su�ering from
bruxism often are unaware of the disorder until it becomes so
advanced that the dentist is able to infer the diagnosis from the
patient’s worn down teeth. The exact cause of bruxism is unknown,
but it is believed there is a genetic component to it [2], and it is
usually linked to the levels of stress and anxiety that the patient
is experiencing. With the COVID-19 pandemic having lasted for
over a year and having had a major impact on the lives of nearly
every individual, dentists are warning of another, accompanying,
bruxism epidemic [7], prompting the issue of tooth wear and other
side e�ects of bruxism.

Existing methods for diagnosing bruxism tend to be unreliable
or invasive [18]. Most cases that are detected in earlier stages are
based on self-reporting: for example, when a sleep partner notices
grinding sounds, or when the patient reports TMJ pain. However,
previous research indicates that the validity of the self-reported
assessment of bruxism is low to modest and therefore is usually
not su�cient for diagnosis of bruxism [21]. The golden standard
for de�nitive diagnosis of bruxism is electromyogram (EMG) of
the masticatory muscles by polysomnography audio-visual (PSG-
AV) recording [4, 16, 19]. This method is performed in a controlled
environment, and due to its complexity and high cost PSG-AV is
not used for the assessment of bruxism in daily clinical practice.

To address the necessity of detecting bruxism in a non-invasive
and low-cost way, this research presents a methodology to detect
teeth clenching and grinding through an earable device by using
traditional machine learning approaches. We collected accelerome-
ter and gyroscope data from 17 participants using eSense wireless
earbuds with a built-in inertial measurement unit (IMU), using the
data from 13 participants for machine learning. The data comprised
of participants grinding and clenching their teeth in a controlled
environment, as well as performing bruxism-mimicking actions
while engaging in routine activities that would simulate in-the-
wild deployment. Namely, these activities included head movement,
listening to music, walking, talking, chewing, and drinking.
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To increase the inference accuracy, we collected the signals from
both ears of each participant, and we extracted both time and fre-
quency domain features. After preprocessing the collected data, we
used traditional machine learning methods to develop a bruxism
detection algorithm, using random forest (RF) and support vector
machine (SVM). The detection algorithms were evaluated using
both clean data and the more realistic signals collected with partic-
ipants engaging in routine behaviours that could potentially a�ect
the classi�cation of teeth grinding events.

We show that by utilising traditional machine learning methods
we can detect teeth grinding in a controlled environment with
accuracy up to 88%. Additionally, we can detect teeth grinding with
up to 76% accuracy for datasets mimicking real-world scenarios.
The performance on clenching detection task is poorer, although
still shows promise, with us achieving up to 73% accuracy on in-
the-wild setting.

The main contributions of this work are as follows:

• We present a novel dataset compiled as a part of this study,
which contains teeth grinding and clenching data collected
through earables from 13 participants, in both noise-free
environments and while performing routine activities to
mimic in-the-wild data.

• We evaluate traditional signal processing and machine learn-
ing techniques for development of teeth grinding and clench-
ing detection algorithms.

• We show the potential of detecting bruxism through earables
by achieving 76% accuracy on in-the-wild teeth grinding and
73% accuracy on in-the-wild teeth clenching, and provide
ideas for future directions.

2 RELATEDWORK
EMG is a technology commonly utilised for a non-trivial task of
bruxism diagnosis, capable of detecting mastication muscle move-
ment. However, according to [9] EMGmay detect muscle movement
that is not necessarily related to bruxism, limiting the accuracy of
methods relying solely on EMG. In addition, accuracy of portable
EMG recorders for bruxism detection was reported as being un-
satisfactory. [5] EMG can also be seen as obtrusive, relying on
electrodes placed on the face for data collection. Therefore, it is
important to explore alternative sensing modalities for detection of
bruxism-related events.

There have been numerous e�orts in the earables �eld exploring
the potential of in-ear wearables for detection of activities related
to the mouth.

A number of studies looked at detecting jaw and mouth move-
ments by using earables. CanalSense presented a jaw, face, and
head movement recognition system based on detecting changes
in the air pressure inside the ear canal, using barometers embed-
ded in earphones [1]. Another system, EarSense, sensed teeth ges-
tures by detecting vibrations in the jaw that propagate through the
skull to the ear, creating oscillations in the earphone speaker’s di-
aphragm [17]. Other works looked at developing a separate system,
rather than utilising earbuds, for detection of jaw movements. One
such example would be the Outer Ear Interface that measured the
deformation in the ear canal using proximity sensors caused by the
lower jaw movements [3].

There have also been successful attempts at forming a human-
computer interaction system based on unvoiced jaw movement
tracking. JawSense considered the neurological and anatomical
structure of the human jaw and cheek upon system design, and
achieved successful classi�cation of nine phonemes based on the
muscle deformation and vibrations caused by unvoiced speak-
ing [11].

[18] looked at using gyroscope data from an in-ear wearable
for jaw clenching, which is an important part of what we set out
to achieve in this feasibility study. The reported results had an
error rate of 1% when the participant was seated and 4% when the
participant moved, but the work was based on a single participant,
and did not explore the detection of grinding.

Multiple works explored detection of bruxism using wearable
devices, however, most of them are not as inconspicuous as a pair
of earbuds. [13] introduced comfortable around the ear sensors
(cEEGrids) for detecting awake bruxism, analysing bruxism-related
events in contrast to the other facial activity events, such as chewing
and speaking. [12] developed a wearable mouthguard with a force
sensor to analyse teeth clenching during exercise. [6] proposed
to detect sleep bruxism by using electromyography (EMG) and
electrocardiogram (ECG) signals in combination, which produced
substantially better results than using only EMG. [8] developed a
system consisting of an interrogator/reader and a passive sensor
that could be used to record bruxism-related events by placing
the system in a dental splint. Finally, [20] developed a bite guard
designed to analyse bruxism, with the monitoring achieved through
a novel pressure-sensitive polymer.

To the best of our knowledge, this is the �rst work that looks at
using wireless earbuds with built-in IMUs for detection of grinding
and clenching with the goal of diagnosing and tracking bruxism.

3 STUDY DESIGN
An in-ear multisensory stereo device eSense was used for data
collection. Speci�cally, we collected three-axis accelerometer and
three-axis gyroscope data from the built-in IMU.

To collect the aforementioned data a mobile application, called
eSense Client, was used for connecting via Bluetooth to the eSense
earbuds and collecting raw IMU data. Due to the COVID-19 pan-
demic, all of the experiments were carried out remotely. Therefore,
for annotating the data collected from the earables, a timestamped
video was recorded using Zoom [22]. The collected eSense data
was labelled by matching it with the video recording’s timestamp.

Worth noting, that the eSense earbuds [10, 15] contain IMU only
in the left earbud. Therefore, we used two left earbuds from two
pairs of eSense for data collection, to explore the variation in ac-
curacy for two sides, as well as potentially use the data gathered
from both right and left ears together. Indeed, we discovered that
participants typically had a dominant chewing side, which resulted
in mastication muscles on one side of the face being greater devel-
oped. This resulted in data from one of the ears being more valuable
for correct classi�cation of bruxism-related activities, but since the
dominant chewing side varies for di�erent people, we had to use
data from both right and left ear together.

The study was approved by the ethics committee in the Depart-
ment of Computer Science and Technology at the University of
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Cambridge. Informed consent was collected from the study partici-
pants. We ensured that no identi�able information was collected,
and deleted the videos after the IMU data was labelled. Upon con-
sulting a dental health professional, we also excluded any partici-
pants who su�er from bruxism to avoid any further damage to their
teeth, as well as compiled a short questionnaire aimed at identifying
potential participants who might be unknowingly su�ering from
bruxism. The questionnaire was based on Shetty’s et al. research
[19], but amended in collaboration with a certi�cated dentist to suit
the needs of our study. In addition to these precautions, we also
included a compulsory set of simple jawmassage exercises typically
used in TMJ physiotherapy, aimed at alleviating any tension in the
TMJ that the experiment might have inadvertently caused.

For the data collection, in total 17 participants were recruited, 12
females and 5 males, with the youngest participant aged 23 and the
oldest aged 61. After verifying the quality of the collected data, data
from four participants were discarded due to being compromised
during data collection. Therefore, data from 13 participants were
used for this research.

The aim of this study was to assess the feasibility of using in-
ear wearables for detection of bruxism-related events, speci�cally
teeth grinding and clenching. To address this goal, participants
were asked to perform the following seven human-centred sensing
experiments (with experiments 1-6 conducted with the participant
in a sitting position):

1. Control experiment:
(a) Grind teeth for 5 seconds, pause for 5 seconds, repeat 6 times.
(b) Clench teeth for 5 seconds, pause for 5 seconds, repeat 6 times.

2. Moving head side to side:
(a) Look right and left for 30 seconds.
(b) Look right and left for the duration of 5 seconds while grinding,

pause the grinding for 5 seconds, and repeat 6 times.
(c) Look right and left for the duration of 5 seconds while clench-

ing, pause the clenching for 5 seconds, and repeat 6 times.
3. Chewing:

(a) Eat half a slice of bread.
(b) Chew gum for 30 seconds.

4. Read the provided text out loud for 30 seconds.
5. Drink 250 ml of water.
6. Listening to music:

(a) Listen to music for 30 seconds.
(b) While listening to music, grind teeth for 5 seconds, then pause

for 5 seconds, and repeat 6 times.
(c) While listening to music, clench teeth for 5 seconds, then pause

for 5 seconds, and repeat 6 times.
7. Walk around in a quiet room:

(a) Walk around in a quiet room for 30 seconds.
(b) Walk around for the duration of 5 seconds while clenching,

pause the clenching for 5 seconds, and repeat 6 times.
The experiment took around 35 minutes for each participant to

complete from start to �nish.
To the best of our knowledge, this is the most advanced and so-

phisticated dataset that exists for in-ear IMU data of teeth grinding
and clenching.

The experiments were designed each with a speci�c purpose in
mind. While the �rst experiment was intended as control in a quiet,
albeit unrealistic environment, the rest of the experiments were de-
signed to either recreate activities that are known to interfere with
signals collected via earbuds, such as moving the head, walking, as
well as listening to music – an especially important task, keeping in
mind that the primary purpose of earbuds is playing music. Other
activities, such as chewing, drinking, and reading, were meant to
recreate the activities in which a typical user is likely to engage
daily, which include a signi�cant involvement of mastication mus-
cles, which might result in a signal similar to either clenching or
grinding.

4 METHODOLOGY
4.1 Data collection
IMU (accelerometer and gyroscope) data was collected from both
ears of the participants with a sampling rate of 5Hz. This yielded
approximately 25 minutes of IMU data per participant, containing
12 columns: X, Y, and Z axes for the acceleration and three axes
for the gyroscope data collected from one ear, and the same data
collected from the second ear. In addition to the IMU data, we also
recorded a video of the participant performing the tasks, to use as
ground-truth for correlating the collected IMU data to grinding and
clenching events. Speci�cally, the videos were used to note down
the start and end times of each general activity (such as moving
head, chewing, walking, etc.), and also to note down the start and
end times of grinding and clenching events during these activities.
The times with no grinding or clenching events were noted down
as silent periods, regardless of the general activity performed.

4.2 Segmentation and Labelling
Dealing with data in time domain, segmentation into shorter win-
dowswas necessary.We used a slidingwindowwith 1.6 s length and
50% (or 0.8 s) overlap, to minimise the risk of missing the transition
from one event into another.

Creating a label for each window posed a challenge due to the
fact that sometimes the window would contain a transition from
one event to another, such as transitioning from silent to grind-
ing, making the labelling non-trivial. We explored two labelling
methodologies:

• labelling the window as the dominant event in that window:
if the larger portion of the window contains the grinding
data and smaller portion of silent data, the window would
be labelled as grinding. If the split is equal, then the window
is labelled as silent.

• only labelling the window as silent if all the samples within
the window are silent, and no amount of grinding or clench-
ing event present.

Based on the preliminary comparison of the methodologies, it ap-
peared that labelling the window according to the dominant event
yielded superior performance, due to which this was the method
that we chose for further analysis.
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4.3 Feature Extraction
As input for the machine learning algorithms we used a number of
various features. Raw signal from both ears was used, resulting in 8
datapoints for each axis for each ear, yielding 48 features. Then, we
used a sum of vector magnitudes (SOVM), which was calculated
using the following equation:

SOVM =
q
G2' + ~2' + I2' +

q
G2! + ~2! + I2!,

where G , ~, and I represent a single value collected from the sensor,
corresponding to one of the axes, and ! and ' representing the
signals collected from left and right ear, respectively.

The raw data collected from the three axes and the calculated
SOVM can be seen in Figure 1.

We utilised commonly-used Python libraries Librosa and Scipy
to extract a few additional features: Mel Frequency Cepstral Co-
e�cients (MFCCs), spectral �atness, spectral centroid, and poly
features calculated for the sum of vector magnitudes, and a mean
was calculated for each of the additional feature vectors. Then,
maximum, minimum, mean, standard deviation, and absolute devi-
ation of the signal amplitude was extracted from the sum of vector
magnitudes and concatenated with the rest of the features. Finally,
zero-crossing rate for each of the axes was averaged and concate-
nated. This yielded a total of 71 features.

4.4 Classi�cation
Five traditional machine learning classi�ers were explored: decision
tree (DT), k-nearest neighbours (k-NN), logistic regression (LR),
random forest (RF), and support vector machine (SVM). In this work,
the results for RF and SVM are reported, since they demonstrated
the best performance during preliminary evaluation.

For evaluating the detection algorithm, we used a leave-one-out
approach, commonly utilised in machine learning problems with
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Figure 1: Raw gyroscope data collected with the participant
grinding teeth, with the grinding events coloured in red, and
periods with no grinding coloured in grey.

limited number of participants. Then, mean and standard deviation
were calculated for each of the performance metrics across the
resulting values.

To evaluate the algorithm, we compared accuracy, precision,
recall, and f1-score. While low number of false positives (FP) and
false negatives (FN) is desirable, it is important to keep in mind that
in this scenario occasional FP or FN might be acceptable due to the
ability to infer the overall diagnosis only if multiple bruxism-related
events are detected.

4.5 Experiment design
The goal of this study was to assess the feasibility of detecting
bruxism-related events in a controlled and a mimicked in-the-wild
environment through in-ear wearables using IMU signals. This
goal informed our experiment design. In this paper we present the
performance of two traditional machine learning algorithms, RF and
SVM, on data collected from two di�erent sensors, accelerometer
and gyroscope, for the following tasks:

Task 1: detection of bruxism-related events in a controlled en-
vironment, with minimal external noise and no other actions per-
formed, participant being still:

(a) for teeth grinding (580:388 windows of grinding:silent data);
(b) for teeth clenching (589:438 windows of clenching:silent

data).

Task 2: detection of bruxism-related events in a mimicked in-
the-wild environment (in order to evaluate algorithm performance
in a more realistic setting), with participants performing a range of
routine activities:

(a) teeth grinding and clenching during no general activity,
while moving head, and while listening to music (1658:2334
grinding:silent and 1695:2334 clenching:silent windows);

(b) activities from task 2b with the addition of other routine
activities, such as chewing bread, chewing gum, reading
out loud (to imitate speaking), drinking water, and walking.
Worth noting, that the additional activities do not include
grinding or clenching events, and are intended for testing
the detection algorithm performance on actions that are
known to either be relatively noisy or involve signi�cant
jaw activity that may be misclassi�ed as teeth grinding or
clenching (1658:4825 grinding:silent and 1695:4815 clench-
ing:silent windows).

5 RESULTS AND DISCUSSION
5.1 Bruxism Detection in Controlled

Environment
Task 1 was designed with the purpose of assessing the feasibility
of detecting teeth grinding and clenching using earbuds with a
built-in IMU in a controlled environment, with the participant com-
pletely still. Based on leave-one-out validation, comparing SVM to
RF demonstrates that SVM performs better on both grinding and
clenching detection. It is obvious that using gyroscope data yields a
signi�cantly higher performance, achieving 89% and 60% on grind-
ing and clenching events detection, respectively. For the controlled
experiment, RF achieves superior performance only on detection of
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grinding events using accelerometer data (70% accuracy), in com-
parison to detection of grinding events using accelerometer and
SVM (66% accuracy). However, both results are signi�cantly worse
than the detection accuracy achieved using gyroscope data. We also
calculated precision, recall, and f-1 score, and these metrics as well
as the standard deviation for the leave-one-out cross-validation are
reported in Table 1.

5.2 Bruxism Detection In-The-Wild
We demonstrated that in-ear wearables show promise for detection
of bruxism-related events in a controlled environment. But, natu-
rally, it is important to also analyse whether earables could o�er
a viable solution for unobtrusive bruxism detection in-the-wild.
For this purpose, Task2(a) and Task2(b) were designed to test the
bruxism-related activity detection approach while the study partici-
pants were performing other actions. Speci�cally, Task2(a) focused
on teeth grinding and clenching in silence, as well as these events
while listening to music or moving the head. Task2(b) presented an
even more complex problem, adding other activities that involve
substantial jaw movement.

For Task2(a), SVM model on gyroscope data showed the best
performance, for teeth grinding detection yielding 73% accuracy,
and reaching 61% accuracy for teeth clenching detection. Task2(b)
proved to be a more challenging experiment, which can be observed
from reduced performance on precision, recall, and f-1 score. How-
ever, RF still performs su�ciently well on gyroscope data, yielding
a 68% and 61% precision on grinding and clenching, respectively.
SVM was incapable of detecting clenching using accelerometer
data, predicting that all the testing data do not contain clenching
instances. Therefore, no metrics are reported for this algorithm. In
general, acceleration-based performance was insu�cient, proving
that gyroscope provides more valuable data for bruxism detection.
Detailed results for these experiments can be seen in Tables 2 and 3.

We also evaluated which tasks have the most impact on detection
of bruxism, concluding that head movements and reading out loud
have the most impact on correct classi�cation of grinding events,
and head movements, walking, and drinking have the most impact
on clenching detection.

Table 1: Detection of grinding (denoted as Gr.) and clenching
(denoted as Cl.) by SVM and RF algorithms on Task 1. The
values reported are mean±stdev.

Gyroscope Accelerometer
SVM RF SVM RF

Gr.

Accuracy 0.88±0.05 0.85±0.08 0.66±0.12 0.70±0.11
Precision 0.89±0.04 0.87±0.07 0.69±0.19 0.70±0.16
Recall 0.88±0.05 0.84±0.09 0.63±0.12 0.67±0.12
f1-score 0.88±0.05 0.83±0.10 0.57±0.17 0.63±0.15

Cl.

Accuracy 0.60±0.06 0.57±0.06 0.58±0.05 0.55±0.06
Precision 0.56±0.13 0.54±0.10 0.40±0.15 0.53±0.12
Recall 0.57±0.06 0.54±0.07 0.51±0.02 0.52±0.08
f1-score 0.52±0.11 0.52±0.11 0.40±0.06 0.49±0.08

Table 2: Performance on detection of teeth grinding and
clenching on Task2(a).

Gyroscope Accelerometer
SVM RF SVM RF

Gr.

Accuracy 0.73±0.05 0.73±0.08 0.55±0.04 0.56±0.07
Precision 0.74±0.06 0.73±0.08 0.43±0.10 0.51±0.12
Recall 0.70±0.05 0.71±0.08 0.49±0.03 0.52±0.07
f1-score 0.70±0.06 0.71±0.09 0.42±0.06 0.48±0.09

Cl.

Accuracy 0.61±0.05 0.60±0.04 0.57±0.03 0.52±0.06
Precision 0.60±0.08 0.57±0.07 0.36±0.15 0.45±0.08
Recall 0.56±0.06 0.57±0.05 0.50±0.01 0.49±0.02
f1-score 0.52±0.08 0.55±0.07 0.38±0.04 0.42±0.04

Table 3: Performance on detection of teeth grinding and
clenching on Task2(b).

Gyroscope Accelerometer
SVM RF SVM RF

Gr.

Accuracy 0.74±0.03 0.76±0.05 0.73±0.03 0.67±0.11
Precision 0.53±0.18 0.68±0.07 0.46±0.14 0.48±0.10
Recall 0.51±0.02 0.61±0.06 0.50±0.02 0.49±0.05
f1-score 0.45±0.04 0.61±0.07 0.44±0.04 0.45±0.07

Cl.

Accuracy 0.74±0.02 0.73±0.02

N/A

0.70±0.04
Precision 0.39±0.05 0.61±0.05 0.41±0.05
Recall 0.50±0.00 0.54±0.02 0.49±0.02
f1-score 0.43±0.01 0.52±0.03 0.44±0.03

5.3 Limitations and Future Work
Although this work is intended as a feasibility study to assess the
capability of in-ear wearables to detect bruxism-related events, it
is nevertheless important to highlight its limitations and discuss
some potential avenues worth exploring in the future.

Teeth grinding, which is the typical symptom of bruxism, usu-
ally happens when the person is not fully conscious, most often
exhibited in patients’ sleep. Our dataset consists of people who are
unlikely to be actually su�ering from bruxism, and the data is col-
lected with the participants being awake and fully conscious, which
means that the data which would be collected from real bruxism
su�erers might be slightly di�erent. However, earbuds for sleep
have started to appear on the market, the sole purpose of which is
to provide comfortable noise cancellation, which is very promising
for unobtrusive detection of bruxism during sleep.

Our results show that the accuracy of clenching detection is
lower than that of grinding. However, it is important to note that
grinding is an action that involves continuous movement in the jaw
joint, resulting in continuously changing IMU data. Clenching, on
the other hand, only involves changes in acceleration and angular
velocity when the action is initiated, i.e. the person clasps their
teeth together, and not when the action is in progress, i.e. the teeth
are clasped and the jaw is not moving. This may explain the poorer
performance on detection of clenching events. Going forward, ex-
ploring alternative ways of data segmentation and labelling might
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be useful, as well as more advanced machine learning approaches
that are capable of dealing with time-series data, such as recurrent
neural networks (RNNs).

From the classi�cation perspective, given recent advances in
deep learning, it would be imperative to explore the potential of
deep learning on raw IMU data from earables for detection of
bruxism-related events.

Other potential areas of research would include exploring sensor
fusion and considering accelerometer and gyroscope data in com-
bination, as well as potentially investigating the feasibility of using
audio collected with a microphone pointing inside the ear [14].

Finally, given the complexity of collecting and labelling bruxism
data, it would be interesting to explore IMU data augmentation, as
well as potentially generating synthetic data.

6 CONCLUSIONS
This work presents a feasibility study on detection of bruxism-
related events using earables. During a bruxism epidemic, which
was potentially exacerbated by the COVID-19 pandemic, it is es-
sential to devise a low-cost, unobtrusive, and socially acceptable
method for bruxism detection, which would allow to diagnose the
patients in early stages of the disorder, before irreversible tooth
wear occurs. We compiled a �rst extensive dataset of teeth grinding
and clenching data collected via earbuds with a built-in IMU. In
addition to collecting these data in a controlled environment, we
also collected data mimicking in-the-wild signal by asking the users
to simulate teeth grinding and clenching while performing other
activities, or to engage in routine activities that require substantial
jaw involvement.

By using traditional machine learning methods, we concluded
that SVM and RF yield the best performance. Gyroscope data ap-
pears to be muchmore valuable than acceleration data for identi�ca-
tion of bruxism-related events. We achieved 88% and 66% accuracy
on teeth grinding and clenching, respectively, in a controlled en-
vironment. We also demonstrate the potential of this technology
in a mimicked in-the-wild environment, achieving 76% and 73%
accuracy on teeth grinding and clenching, respectively.
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ABSTRACT
In this study, we propose a method using eSense for detecting
forward leaning posture during computer work, and verify its ef-
fectiveness. We will also develop a system that prompts the user
to improve posture when a forward leaning posture is detected,
and verify its e�ectiveness. In the future, we aim to develop a sys-
tem that targets not only forward leaning posture but also posture
improvement in other parts of the body by utilizing the contents
veri�ed in this research.
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1 INTRODUCTION
O�ce workers, who work with a computer, often su�er from unnat-
ural posture while working. Working for a long time with unnatural
posture can cause not only physical fatigue, but also diseases such
as tendinitis and hunchback. In order to prevent the onset of these
diseases, it is necessary to work with correct posture continuously.
However, it seems di�cult to work while always being aware of
maintaining correct posture. We think it is necessary that a system
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that detects unnatural posture and notify users to encourage them
to maintain correct posture. In this study, we focus on detecting
forward leaning posture, and aim to verify the method of it using
eSense, which is an earable device equipped with a 6-axis acceler-
ation sensor. At the same time, we aim to develop a system that
encourages posture improvement when a forward leaning posture
is detected, and to verify the e�ectiveness of the system.

2 RELATEDWORK
Several posture estimation methods using wearable devices have
been proposed in previous studies. For example, this study[2] veri-
�ed whether posture estimation is possible using only the 3-axis
accelerometer of a cell phone, and found that the basic motions of
sitting, standing, walking, and running could be estimated. How-
ever, in order to detect forward leaning posture using a cell phone,
it needs to be worn on the upper body where body movements
are large. Since cell phones have been getting larger and larger on
recent years, wearing them on the upper body all the time can be
a hindrance to your work. Also, not all people wear a cell phone
while working with a computer (for example, some people put it
on their desk while working).
On the other hand, there is also previous study about a system that
promote improved posture during desk work. For example, this
study[3] investigated the use of a very slow moving monitor for
unobtrusive posture correction, and revealed its e�ectiveness. We
think this system very good in that it can correct posture impercep-
tibly without disturbing the user’s work with sound or vibration,
but the drawback is that it requires a motorized monitor which is
hardly widespread yet.
The device used for posture estimation while working on a com-
puter should not interfere with the work and should not cause
discomfort even if it is worn for a long time. Therefore, we think
earphones are appropriate because it is small and familiar to many
people. Although sensor-equipped earphones are not yet widely
available, given the popularity of TWS over the past few years, we
think it would be useful to conduct this study using earables.

3 METHODS
3.1 Detecting forward leaning posture
In this study, we use eSense, which is an earable device developed by
Nokia Bell Labs[1]. eSense is equipped with a 6-axis accelerometer
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in the left earbud, and we propose a method to detect forward-
leaning posture from these sensor data (see Fig. 1). To determine
whether the posture is forward-leaning or not, we can use the
rotation angle of the left earbud. As shown in Figure 2, when users
are in forward-leaning posture, there should be a change in the
rotation angle on the Z-axis. Therefore, we detect forward-leaning
posture when the a rotation angle on the Z-axis of the left earbud
exceeds a threshold value for a certain amount of time.

Figure 1: The orientation of the IMU axes and the polarity
of rotation in relation to the earbud (quoted from [1]).

Figure 2: There should be a change in the rotation angle on
the Z axis when users are in forward leaning posture.

3.2 Implementing a posture improvement
promoting system

Since we can access the 6-axis accelerometer data through the BLE
interface, we created an application to acquire the sensor values
in real-time. To improve focus on the work or studies, it is recom-
mended to keep smartphones out of sight. However, it is not the
case for smartwatches, and smartwatches can also be used to collect
further vital data that re�ects user’s state, such as hand motion and
heart rate. Hence, we propose to collect eSense data from a BLE
enable Android OS based smartwatch. Android API used to pro-
vide two ways for measuring the rotation angle of android devices,
but (4=B>A .).%⇢_$'�⇢#)�)�$# has already been deprecated,
and (4=B>A"0=064A .64C$A84=C0C8>=() cannot be used with eSense
because it requires the value of a magnetometer, which eSense is
not equipped. Therefore, we need to implement the algorithm to
measure the rotation angle of the device by ourselves. We consider
using the following two methods to measure the rotation angle and
will verify their accuracy.

(a) Calculate the rotation angle by time integration of angular
velocity, and correct it using the acceleration data.

(b) Calculate the rotation angle by applying a Kalman �lter to
acceleration data and angular velocity data.

Then, we propose three kinds of feedback methods to encourage
users to improve their posture.

• The �rst method is to play an audio message from the eS-
ense. It is inspired by the fact that people will wear earbuds
while using this system, and it is expected to validate the
e�ectiveness of auditory feedback while working.

• The second method is to show noti�cations on the computer
screen. By using the OS noti�cations that users often see
while working, it is expected to provide feedback without
feeling users disturbed their work.

• The third method is to activate vibration and show noti�ca-
tion on the smartwatch.

Figure 3 show a schematic of proposed system. We plan to eval-
uate the e�ectiveness of each method by asking the subjects to
�ll out a questionnaire and assess whether it helped improve their
posture and whether it did not interfere with their work.

Figure 3: Schematic overview of proposed posture improve-
ment system

4 FUTUREWORK
Both eSense and smartwatches do not interfere with work and
do not cause discomfort even when worn for a long time. Besides
measuring the forward-leaning posture from eSense, measuring
the wrist tilt angle using the smartwatch and providing feedback
to users may help prevent tendinitis caused by prolonged typing.
Many smartwatches do not have a geomagnetic sensor but have an
accelerometer and gyroscope. Hence, the method of measuring the
rotation angle proposed in this study may be applicable.
In this way, we would like to develop a posture improvement pro-
moting system that combines multiple daily usage devices and lead
to the veri�cation of its e�ectiveness.
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ABSTRACT 
Conventional EEG devices cannot be used in everyday life and 
hence, past decade research has been focused on Ear-EEG for 
mobile, at-home monitoring for various applications ranging 
from emotion detection to sleep monitoring. As the area 
available for electrode contact in the ear is limited, the 
electrode size and location play a vital role for an Ear-EEG 
system. In this investigation, we present a quantitative study 
of ear-electrodes with two electrode sizes at different 
locations in a wet and dry configuration. Electrode impedance 
scales inversely with size and ranges from 450 kΩ to 1.29 MΩ 
for dry and from 22 kΩ to 42 kΩ for wet contact at 10 Hz. For 
any size, the location in the ear canal with the lowest 
impedance is ELE (Left Ear Superior), presumably due to 
increased contact pressure caused by the outer-ear anatomy. 
The results can be used to optimize signal pickup and SNR for 
specific applications. We demonstrate this by recording sleep 
spindles during sleep onset with high quality (5.27 µVrms). 

CCS CONCEPTS 
• Human-centered computing • Ubiquitous and mobile 
computing • Ubiquitous and mobile computing systems and 
tools 
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1 Introduction 
Electroencephalography (EEG) is a technique to measure 
electric potential differences produced by a group of neurons 
measured typically at the surface of the scalp. The EEG devices 
used in clinical settings are bulky, require trained personnel, 
and are time-consuming to setup and conduct measurements 
with. Hence, over the past decade, many research groups have 
investigated recording EEG from the outer ear canal (Ear-
EEG) [1, 3, 4, 8, 14]. Ear-EEG has been shown to have similar 
features and quality to traditional scalp EEG [10]. The 
combination with a miniaturized and energy efficient 
biopotential front-end widened the scope to prospective uses 
outside of clinical and research areas. As a result, Ear-EEG 
appears to be the only viable choice for widespread consumer 
adoption of EEG technology. Applications for Ear-EEG range 
from brain-computer interfaces [11], work-related stress 
management solutions [7], and sleep monitoring [13] to 
cognitive-controlled hearing aids [2], epilepsy seizure 
warning devices [21], emotion monitoring [1] and 
neurofeedback home training systems [5].  
As EEG records synchronized neuronal electrical activity, the 
signal needs to travel from the point of its origin i. e., clusters 
of neurons to the surface of the head through different tissue 
layers. For good signal acquisition, apart from the 
measurement device requirements to have a high input 
impedance and common mode rejection ratio (CMRR), the 
skin-electrode interface plays a crucial role. The skin contact 
impedance depends on the electrode’s properties such as the 
electrode’s material, size and skin conformity. Particularly for 
mobile applications, it is important to achieve a low-
impedance contact to obtain a sufficiently high signal-to-noise 
ratio (SNR).  
Kappel et Al. [9] investigated impedance inside the ear canal 
to compare wet and dry ear-EEG electrodes. They observed a 
mean (standard deviation) low frequency impedance 
(<100 Hz) of the canal electrodes of 1.2 MΩ (SD =1.4 MΩ) and 
a high frequency impedance (>100 Hz) of 230 kΩ  
(SD = 220 kΩ) for rectangular silver electrodes of area  
14 mm². The impedance measurements accounting for 
cerumen showed an 86% decrease in impedance after 
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removing cerumen [18]. The electrode stabilization time in 
the ear before a measurement is also a major determinant of 
stability and low skin contact impedance, lowering impedance 
by up to 50% [15]. Hence, in this research, all measurements 
were conducted after removing the cerumen from the ear 
canal and after specific stabilization times. 
In this study, we extend the discussion by investigating the 
influence of electrode size and location on the skin contact 
impedance. We compare the impedance for two electrode 
sizes and three locations inside the ear canal for dry and wet 
contact. Based on the findings, the optimal size and position 
are used to measure and characterize Ear-EEG during sleep 
onset. Using the proposed configuration, we were able to 
successfully measure a high-quality signal and extract 
characteristic sleep features from the measured data. 
The experiments and data produced were part of the research 
for the Ear-EEG acquisition system for IDUN Technologies AG. 

2 Materials and Methods 

2.1 Earpiece Production 
A memory foam earplug is used as a base to provide more 
flexibility and comfort for long-duration monitoring and to 
adapt to the different ear canal shapes of the test subjects. The 
electrodes were fabricated by adding cutout silver-plated 
knitted conductive fabric (surface resistivity of below 5 
Ω/cm²) to the surface of the foam earplugs in order to match 
the mechanical deformation of the memory foam. Each 
earpiece comprises three electrodes oriented at an angle of 
120° relative to the longitudinal axis as shown in figure 1. Two 
different sizes were laser cut and bonded to the earplugs 
using biocompatible adhesive at 120° apart as shown in 
Figure 1. 
 

 

Figure 1. Foam earplug earpieces with three electrodes 
located at 120° apart of sizes ‘Small’ 8x5 mm (40 mm²) 
and ‘Large’ 8x7 mm (56 mm²) 

Each electrode was manufactured with a curvature at the tip 
in order to avoid skin irritation while inserting in the ear 
canal. 

2.2 Electrode Configuration 
The labeling scheme for in-ear electrode locations was 
adapted from P. Kidmose et Al. [10]. The electrodes are 
indicated by Exy, where x ∈ {L, R} refers to electrodes in the 
left or right ear, and y refers to the electrode position in the 
ear canal respectively. The electrode locations investigated in 
this study were ELE, ELJ, and ELH as shown in Figure 2. 
 

 

Figure 2. Labeling scheme for the in-ear electrodes, Exy 
where x ∈ {L, R} refers to the left or right ear and y is the 
position of the electrodes. The three positions used in this 
study are ELE, ELH and ELJ 

2.3 Test Subjects 
The measurements were performed in the left ear of 10 
healthy participants after a stabilization time of 5-7 minutes. 
Before measurements, the participants were requested to 
clean their ears with a cotton swab and ethyl alcohol wipe 
before inserting earpieces in the ear. For dry measurements, 
electrodes were inserted into the cleaned but dry ear canal. 
For wet measurements, a drop of saline solution was applied 
on each electrode before the experiment. Before putting gel 
reference and counter electrodes on the skin, the skin was 
prepared by cleaning with ethyl alcohol. For hygienic 
concerns, each participant received their personal earpieces. 

2.4 Impedance Spectroscopy 
A frequency response analyzer (PalmSens4 [16]) was used to 
evaluate the frequency response in a three-wire impedance 
configuration which was connected to a Laptop (Windows 
Version 10) running PSTrace software [17]. 
The impedance measurements were carried out at the same 
time on all three electrodes simultaneously, whereas ELJ, ELH, 
and ELE served as working electrodes (WE) and standard wet 
gel electrodes placed at the inion as a counter (CE) and 
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between inion and ear as reference (RE) electrodes as shown 
in Figure 3. Wires were crimped to the electrodes using 
connector pins. The medical tape was used to ensure that the 
electrodes outside of the ear canal did not contact each other. 
After the stabilization time, four frequencies were swept from 
1 Hz to 100 Hz. The data is analyzed using MATLAB with mean 
and standard deviation. 
 

 

Figure 3. Electrode configuration of the ear impedance 
spectroscopy on the test subject for the three-electrode 
setup, standard wet gel electrodes are at RE and CE, WE 
are ear electrodes 

2.5 Sleep EEG 
As an initial investigation into the ability of the three electrode 
earpieces to detect EEG features, a 30-minute sleep session 
was organized. An Open BCI Cyton device was used to amplify 
biopotential signals from the left ear of the subject and were 
recorded using the OpenBCI Graphical User Interface (GUI) 
software package. The test subject reclined on a comfortable 
sofa and fell asleep while being monitored with a video 
camera to identify large body movements and aid in the 
results interpretation. 
A stabilization time of ~10 minutes was used to allow the 
memory foam to stabilize in the ear. The only preparation 
done was cleaning ears with cotton swabs. The contra-lateral 
mastoid position was used for the counter and the neck was 
used for the reference position of the electrode setup. 
Standard wet gel electrodes were used as counter and 
reference electrodes. 

 

 

3 Results and Discussion 

3.1 Electrode Size 
The mean impedance after 5 and 7 minutes of stabilization 
time in the dry ear for S and L electrode sizes is shown in 
Figure 4 (n=3). The impedance was inversely proportional to 
the size of the electrodes and ranged from 1.25 MΩ for small 
to 450 kΩ for large electrodes after 5 min of stabilization time 
and from 1.29 MΩ (S) to 511 kΩ (L) after 7 mins of 
stabilization time at 10 Hz as shown in Figure 4.  As reported 
previously in the literature, intra- and inter-subject variability 
can be significant for dry contact electrodes. For visual clarity, 
the standard deviation was excluded from the plot but can be 
seen in Table 1 in the supporting material.  
Depending on the used amplifier, impedances should typically 
be well below 1 MΩ to enable high-quality signal recordings 
and artifact rejection [6]. At the same time, bigger electrodes 
mean loss of spatial resolution and number of channels. To 
balance this tradeoff, we decided to use the smaller size for 
the further experiments but reduce the impedance by adding 
a drop of saline solution to the electrode surface prior to 
measurement.  
In contrast to the electrode size, the two minutes difference in 
stabilization time did not significantly change the impedance; 
hence a stabilization duration of 5 minutes was chosen for the 
following experiments. 
 

 

Figure 4. Mean impedance magnitude of the two electrode 
sizes, small (S) and large (L) at 5 and 7 mins of 
stabilization times, Stabilization time does not affect 
impedance magnitude significantly whereas the effect of 
electrode size on impedance magnitude can be seen 
clearly 
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3.2 Electrode Location 
In a second experiment, impedances were compared for 
different positions in the ear canal using a wet skin interface. 
The mean impedance magnitude from 10 subjects is shown in 
Figure 5. The mean impedance values for small electrodes at 
10 Hz were 28 kΩ (SD = 24 kΩ) for ELE, 42 kΩ (SD = 30 kΩ) 
for ELJ, and 29 kΩ (SD = 25 kΩ) for ELH respectively whereas 
for large electrodes the values were 22 kΩ (SD = 21 kΩ) for 
ELE, 25 kΩ (SD = 14 kΩ) for ELJ, and 29 kΩ (SD = 19 kΩ) for 
ELH respectively. For visual clarity, the standard deviation 
was excluded from the plot but can be seen in Table 2 in the 
supporting material.  
L-sized electrodes have a lower impedance in comparison to 
the S-sized electrodes following the same trend as in dry 
measurements. The values for wet measurements for all 
electrodes align with the wet electrode impedance values 
found in the literature, 34 kΩ (SD = 37 kΩ) [9]. The irregular 
shape of the ear canal causes different contact pressure on the 
foam bud and based on anatomy, will likely be the highest at 
the ELE position [20]. This is also reflected in the impedance 
results for both sized and contact conditions. Larger 
electrodes could average out local differences in ear canal 
surface and the differences between locations becomes 
smaller. Additionally, the use of ionic solution covering the 
electrode surface area can reduce the effect of size areas as a 
liquid film can compensate for skin irregularities. However, 
fluid might cause issues related to cross-talk between 
electrodes and hence, there needs to be a tradeoff between 
size and number of channels. So, the sleep EEG measurements 
were performed with small size electrode earpieces, ELE as 
measurement electrode. 
 

 

Figure 5. Mean impedance magnitude of the two electrode 
sizes small (S) and large (L) at locations ELE, ELJ and ELH. 
Among two sizes, Location ELE shows the lowest 

impedance compared to the other two locations of both 
sizes. 

3.3 Sleep EEG 
The raw signal from the sleep trial was visually investigated 
using the OpenBCI GUI. Of particular interest were large-
signal deviations resulting from subject movements (motion 
artefacts) as well as signal changes related to the physiological 
sleep state. Common sleep features include spindles and the 
slow-wave k-complex. These are seen as bursts in the EEG 
signal and occur close to one another. The data was filtered 
with a notch filter at 50 Hz to address line noise as well as a 
band-pass filter from 1 to 50Hz. It was observed that the    
Ear-EEG signal was stable and bursts of activity with 
associated slow waves were present. The signal 
characteristics are similar to spindle activity from Ear-EEG 
reported by Mikkelsen et. Al [12]. This provided the first 
evidence that sleep features could be detected using the Ear- 
EEG electrode setup. 
 

 

Figure 6. Sleep-EEG signal recorded from the ear during 
the sleep trial. Bursts in the signal were present and 
reminiscent of sleep spindle activity as seen in the 
literature. 

4 Conclusion 
This study showed the impact of electrode size and location 
on the skin contact impedance inside the ear-canal for both 
dry and wet skin contact. Impedances ranged from 450 kΩ to 
1.29 MΩ for dry and from 22 kΩ to 42 kΩ for wet contact at 10 
Hz and was inversely proportional to the electrode area. The 
location ELE provided the lowest impedance irrespective of 
size, likely due to increased attachment pressure to the skin 
resulting from the anatomy of the ear canal.   
We combined small electrode size and the ELE location to 
detect sleep onset from the ear canal. Characteristic sleep 
spindles were clearly distinguishable from the baseline during 
the measurement   
The ability to measure sleep activity is ideal for soft electrode 
designs, as the material can conform will to the ear canal 
anatomy. During sleep subject movements will be small to 
minimize motion signal artefacts. 
The next step in evaluating soft electrodes includes a 
comparison to scalp-based EEG to look more closely at 
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correlations between the scalp and ear canal locations and the 
resulting signal quality. 
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ABSTRACT
Due to the in�uence of the new coronavirus, many people are in-
terrupting �tness clubs and exercise/sports performed by multiple
people. Under these circumstances, "core training," which can be
easily performed indoors by individuals, attracts attention as an
exercise to improve health. However, it is not easy to recognize
whether the posture during the training is correct or not, whichmay
signi�cantly reduce the e�ect of the exercise. To tackle these issues,
we have been developing "Coremoni-WE," a core training monitor-
ing and support system that combines wearables and earables to
judge posture.
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1 INTRODUCTION
In recent years, people have been spending more and more time
at home to prevent the spread of new coronaviruses. In a survey
on health[2], more than 30% of the respondents answered that
they became more active after the coronavirus outbreak, and "core
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training," which can be easily performed indoors by individuals, is
attracting attention. However, there is a concern that the e�ects of
trunk training performed by individuals may be reduced because
the trunk is often not used correctly compared to the activity con-
ducted under an instructor.This study proposes a support system for
core training using wearable and earable IMUs to help individuals
perform core training correctly.

2 RELATEDWORKS
Barbado et al. studied about the reliability of smartphone accelerom-
eters to quantify the intensity of core training [1]. From the �ve
types of core training performed by 23 participants, they obtained
moderate-to-high reliability scores for pelvic acceleration and con-
cluded that smartphone accelerometers is useful to identify the
individuals’ core training status and to improve the training pro-
grams. However, this study is not mentioned about the correct
postures and user feedbacks.

While many researchers and developers have been developing
applications based on smartphones and smartwatches, Kawsar et
al. [3] proposed and developed a new wearable platform called
“eSense”. The eSense platform consists of a pair of wireless earbuds
augmented with kinetic, audio, and proximity sensing [4]. The left
earbud has a six-axis IMU with an accelerometer, a gyroscope, and
a Bluetooth Low Energy (BLE) interface to stream sensor data to
a paired smartphone. Both earbuds are also equipped with micro-
phones to record external sounds.

Prakash et al. introduced the advantages of eSense in counting
the number of steps of walking [5]. While the head movement
can still pollute this bouncing signal, they proposed a method to
alleviate the noise from head movement. Results show 95% step
count accuracy even in the most challenging test case—very slow
walk—where smartphone and wrist-band-type systems falter. Im-
portantly, their system, which is named “STEAR” (STep counting
from EARables) is robust to changes in walking patterns and scales
well across di�erent users. Additionally, they demonstrated how
STEAR also brings opportunities for practical jump analysis, often
crucial for exercises and injury-related rehabilitation.

https://doi.org/10.1145/3460418.3479325
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Figure 1: con�guration of CoreMoni-WE

3 PROPOSED SYSTEM
3.1 CoreMoni Overview
CoreMoni is a core training monitoring and support system that
focuses on the user’s "posture" and "trunk blurring" in multiple core
training exercises. It guides to improve the "posture" and "trunk
blurring." In this study, we selected a method to determine "ap-
propriate posture" using wearable and earable sensors (see usage
image in Fig. 1). CoreMoni collects the acceleration and angular
velocity values of the trunk and head from a wearable acceleration
sensor attached to the user’s waist (movesense1) and an earable
acceleration sensor attached to the head (eSense2), and transmits
the data to a mobile information terminal (smartphone or tablet PC).
The transmitted data is converted to variance and angle values and
used for feedback on the mobile terminal. Two types of feedback
are provided: switching images for "posture" and sound e�ects for
"blur of the trunk" during the trunk training.

3.2 Examination of the number of
accelerometers installed and their positions

We conducted a requirement extraction experiment to determine
the number and position of accelerometers in the CoreMoni-WE
implementation. One university student in his 20’s was asked to
perform front plank, which is the most basic core training exercise.
We attached accelerometers to the subject’s head, waist, and ankles
and asked him to perform front plank for one minute according to
the following procedure.

• 0 - 15 sec: correct posture
• 15 - 30 sec: low back posture
• 30 - 45 sec: high back posture
• 45 - 60 sec: continuously changing the posture

We recorded the acceleration at each sensor position during the
elapsed time of 1 minute of core training. After the experiment,
the results were plotted for analysis. Acceleration of the sensors
attached to the head and the ankle does not change much along any
axis. On the other hand, the acceleration of the sensor attached to
the waist showed some change, but the di�erence was signi�cant
only in the y-axis. We can assume that the y-axis of acceleration
at the waist is usefull to detect "trunk blur." Since two points are

1movesense, SUUNTO, https://www.movesense.com/
2eSense, Nokia Bell Labs, Cambridge, https://www.esense.io/

Figure 2: CoreMoni-WE’s visual feedback for front plank

preferable to estimate trunk posture, and no di�erencewas observed
between acceleration at the ankle and the head, in addition to the
wearable sensor at the waist, we selected the earable sensor at the
head, assuming it is more likely to be used than a wearable sensor at
the ankle. A feedback application based only on the waist attached
wearable sensor output as been developed, using thresholds on
y-axis acceleration for evaluating "posture" (see Fig. 2).

4 FUTUREWORKS
This paper proposed supporting individual core training with a
system using accelerometers attached to the waist and ear. Our
�rst application prototype can judge front plank posture using
only waist attached wearable sensor. We are designing new algo-
rithms combiningwaist attachedwearable sensor and head attached
earable sensor to discriminate and support multiple core training
exercises. In this study, we focused only on acceleration among the
data that can be collected from wearable and earable sensors. Still,
in the future, it may be possible to perform training more following
the user’s health condition by collecting biological signals such as
heart rate.
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ABSTRACT
Navigation systems are used daily. While di�erent types of naviga-
tion systems exist, inertial navigation systems (INS) have favorable
properties for some wearables which, for battery and form factors
may not be able to use GPS. Earables (aka ear-worn wearables) are
living a momentum both as leisure devices, and sensing and com-
puting platforms. The inherent high signal to noise ratio (SNR) of
ear-collected inertial data, due to the vibration dumping of the mus-
culoskeletal system; combined with the fact that people typically
wear a pair of earables (one per ear) could o�er signi�cant accuracy
when tracking head movements, leading to potential improvements
for inertial navigation. Hence, in this work, we investigate and
propose PilotEar, the �rst end-to-end earable-based inertial naviga-
tion system, achieving an average tracking drift of 0.15<B for one
earable and 0.11<B for two earables.

CCS CONCEPTS
•Human-centered computing!Ubiquitous andmobile com-
puting systems and tools.
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1 INTRODUCTION
Navigation systems are ubiquitous, they are in our phones, cars,
sometimes even in our smartwatches. People rely on navigation sys-
tems daily: commuting, while running errands, when going to meet
friends and family, driving to a restaurant, etc. Broadly speaking,
it is possible to classify navigation systems as satellite-based [36],
or inertial based [32]. Satellite-based navigation systems are aided
by, for example, a Global Positioning System (GPS). On the other
hand, Inertial Navigation Systems (INS) leverage inertial measure-
ment units (IMUs) to maintain the location of a device without the
need for any satellite device. While GPS-based navigation systems
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generally have greater accuracy than INS, they have shortcomings
when it comes to battery life, and sometimes (e.g., indoors where
GPS coverage is limited) fail to obtain the GPS lock they require to
function. Unlike satellite-based navigation systems, INS are well
suited to applications where either GPS coverage may be limited
or where battery life is a concern.

In this work, for the �rst time, we explore the potential of an
earable-based inertial navigation system. Earables (also know as ear-
worn wearables) is an exploding area for wearable research. They
allow users to combine listening to music with sensing and com-
puting. Speci�cally to this work, earables o�er signi�cant potential
bene�ts for inertial tracking, a key part of an inertial navigation
system. Concretely, earables can be used to track head movements
which, in turn, can act as a proxy for visual attention [9]. As a result
of that, earable could be e�ectively used as an navigation system
by people visually impaired to navigate through audio feedback.
Additionally, the stabilization e�ect of the human musculoskeletal
postural system ensures a natural vibration damping [14] which
leads to reduced noise in the motion sensor data fed to the INS.
Furthermore, unlike other wearables, earables present the unique
opportunity of two distinct vantage points (one from each ear),
which can be leveraged to increase the overall performance of the
system.

However, to implement an earable-based navigation system, a
number of challenges needs to be overcome. First and foremost
the lack of an existing earable platform equipped with a magne-
tometer [8]: we prototype a new ear-worn sensing platform which
leverages a powerful an Arduino Nano 33 BLE Sense as microcon-
troller (MCU). Our prototype earable (Figure 1) collects motion
data from the 9-axis IMU on-board the MCU, and streams it over
Bluetooth Low Energy (BLE). Further, it provides audio feedback
thanks to a custom-made printed circuit board (PCB) which pro-
duces audible tones using pulse width modulation (PWM) and a
resistor. Our prototype is designed to use minimal power and can
run for over a day of continuous use. It also contains other sensors
(temperature, pressure, microphone) which we do not experiment
with in this paper. Secondly, because of the novelty of earable com-
puting, there is a dataset scarcity. We therefore run a small user
study and collect IMU data using our prototype. Thirdly, it is well
known that inertial approaches require calibration in order to pro-
vide accurate results [12]. Thus, we build upon previous work to
de�ne an e�ective calibration framework to calibrate the 9 IMU
axis of our prototype. Speci�cally, we leverage the work done by
Sipos et al. [29] to calibrate the accelerometer, we implement the
gyroscope calibration by Shen et al. [28], and �nally we calibrate
the magnetometer following the approach presented by Ferlini
et al. [8]. Lastly, existing position tracking techniques have to be
adapted to earables. We �nd that a heading estimation approach
which leverages the combination of a gyroscopic heading and a
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Figure 1: Earable prototype

magnetometer heading fused together with a complementary �lter
outperforms existing fusion algorithms. Correct heading estimation
which successfully tracks the position of a person in a navigation
application is predicated on displacement estimation. We perform
this estimation by means of a pedestrian dead reckoning algorithm
adapted over Lu et al. [17].

The contributions of this work can be summarized as follows.
• We prototype an earable platform for collecting and trans-
mitting accelerometer, gyroscope, and magnetometer data
over Bluetooth Low Energy (BLE) and audio feedback. We
use such prototype to collect a new in-the-wild dataset con-
sisting of 9-axis IMU data both from the earable prototype
and an iPhone. The user study has been carried out in agree-
ment with the university ethics committee, and comprises
data of six users walking both indoors and outdoors, both
in low noise and high noise situations. To the best of our
knowledge, there is not a similar publicly available dataset,
and we will share ours the research community.

• We implement and evaluate the performance of PilotEar,
the �rst end-to-end inertial navigation system for earables,
achieving an average drift of 0.15<B for one earable and
0.11<B when fusing both earables.

• We experiment with a novel multi-device sensor fusion ap-
proach to combine both earables and a smartphone. The
proposed approach reduces power usage for accurate track-
ing by 65% by incorporating occasional GPS updates, whilst
reducing tracking drift by 27% when maximizing perfor-
mance.

2 INERTIAL NAVIGATION PRIMER
Inertial Navigation generally consists of three stages.

The �rst stage is the pre-processing stage. IMU data are sam-
pled and then pre-processed to remove the noise and the temporal
drift which often a�ect IMU readings. The �rst challenge is to e�ec-
tively calibrate each sensor. In this work, the sensors we consider,
and calibrate, are accelerometer, gyroscope, and magnetometer.

Once the IMU data are successfully pre-processed and a calibra-
tion framework has been applied, Secondly, the pre-processed data
is used to �nd the heading of the individual. This second phase
goes by the name heading estimation and, in the case of earables
consists in estimating the orientation of the devices. The heading
can be estimated either from the gyroscope [31], from the mag-
netometer [8], or fusing the both. There are many ways to fuse
gyroscope and magnetometer data. In this work we fuse gyroscopic
and magnetic data in a similar way to what Shen et al. [28] did by
mean of a complementary �lter. Speci�cally, the gyroscopic and

magnetic heading are estimated independently and then are fused
as follows:

\ = (1 � U)\l + U\m (1)
Where \l and \< are the gyroscopic and magnetic heading, respec-
tively. The choice of U determines how much of each method is
used. Shen et al. [28] suggest using a low value to fuse the gyro-
scope and magnetometer heading. Other papers suggest increasing
the value of U over time, as the gyroscopic drift increases. Although
not featured in this paper, other well known fusion algorithms are
the Madgwick �lter [19], the Mahony �lter [20], and the Fourati
�lter [10]. We note that our preliminary results suggest the comple-
mentary �lter approach adapted from Shen et al. [28] outperforms
our implementation of all the Madgwick, the Mahony and the
Fourati �lters.

Finally, the third and last phase consists in �nding the change
in position (i.e., displacement) of the user at any given timestamp.
This phase is also known as displacement estimation phase. Con-
cretely, the position of the user is estimated by leveraging the their
heading and linear acceleration to �nd the change in their (x, y)
position at each timestamp. We do that by adapting an existing
pedestrian dead reckoning model to complete the step length esti-
mation e�ectively on earables. In pedestrian dead reckoning (PDR),
the goal is to identify every step that the user makes when walking.
This is used in practice to identify the distance by which the user
has moved at each time step, given the time taken to walk a known
length stride. Our adaptation builds upon the step length estimation
proposed by Lu et al. [17]:

D =  ·
∫

a(C)3C3C (2)

This assumes the velocity for each step starts at 0, whilst the value
of  is computed experimentally for each user.

3 SYSTEM DESIGN
The lack of an existing programmable earable platform equipped
with a magnetometer compelled us to build to a new earable pro-
totype platform. Our prototype features a 9-axis IMU, alongside a
microphone, a temperature sensor, and pressure sensor. The device
is easily re-programmable using the Arduino prototyping platform.
We wanted the prototype to be self-contained, thus we included a
battery and power management. To be useful in real-world applica-
tions, the device should also be able to output audio.

We prototyped our earable platform around an Arduino BLE
Sense 33. This, in turn, runs on a powerful ARM Cortex M4 micro-
controller, and is equipped with a BLE transceiver, 9-axis IMU, mi-
crophone, temperature and pressure sensors. For battery and power
management we used a 520mAh lithium polymer battery (LiPo) and
power regulation module (PAM2401 as a DC-DC boost converter
and MCP73831 as a charging regulator). To enable the headphone
management and switching circuitry (using a TS3A24159 ), not
natively supported by the Arduino BLE Sense 33, we designed and
printed a two-layer custom PCB (Figure 2). The PCB design (created
using EagleCAD) will be released so that researchers can alter the
board for their requirements if necessary.

By using our prototype, researchers can easily collect and trans-
mit data via Bluetooth to a connected device. The ubiquitous Ar-
duino platform can be used to write software for this, exploiting
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the signi�cant existing open-source code. We found that we could
transmit 9-axis IMU from the prototype earable to a connected an
Apple iPhone 11, at 40Hz, with a battery life of over one day (26.3
hours), and a current draw of 20.9mA.

Figure 2: Prototype schematics

As opposed to other earable platforms, like eSense [15], which
are designed as in-ear headphones using injection moulded plastic,
our prototype was 3D-printed, with an around-ear design. With
the current printing material of polylactic acid (PLA), the sizing
is user speci�c (Figure 4). However, if the design could be printed
in a more �exible material such as thermoplastic polyurethane
(TPU), the design could be more universal. Figure 3 shows the
prototype design while Figure 1 shows the complete system which
we designed and used to collect data.

Figure 3: Case design. Figure 4: Prototype worn.

4 EARABLE NAVIGATION
PilotEar consists of a number of elements. First, sensor calibration.
The aim of this phase is to remove biases and temporal drift from
the raw IMU data. Following this �rst step, there is heading es-
timation, where the calibrate IMU data are used to estimate the
direction where the user is facing. Since we were only concerned
with motion on the plane of the earth’s surface, we did not need
to deal with any other orientation axis. The third aspect aims at
estimating the distance moved per time step. These three phases,
once combined, enable user position tracking from single earable.
To improve the performance of PilotEar, we also considered sev-
eral methods to fuse the data sampled by both earables. Finally,
we present a method to provide audio feedback, for instance to a
visually impaired user. By doing so, we believe PilotEar could help
in guiding a visually impaired person towards the correct exit at a
complicated intersection.

4.1 Sensor Calibration
We calibrated the accelerometer using Sipos et al.’s calibration
model (Equation (3)) [29]. We minimized the square error for cali-
bration clips with each earable in a number of static orientations
using the Levenberg-Marquandt Algorithm.

a0 = ©≠
´

1 0 0
U~G 1 0
UIG UI~ 1

™Æ
¨
©≠
´

SF0G 0 0
0 SF0~ 0
0 0 SF0I

™Æ
¨
⇥ ©≠
´
a � ©≠

´
10G
10~
10I

™Æ
¨
™Æ
¨

(3)
To calibrate the gyroscope, we used a method described by Shen

et al. [28]. Here, when the device is relatively stationary (|acc| ⇡ 6),
the gyroscope is calibrated using the magnetometer. To do so, we in-
tegrate the gyroscopic headings over time to �nd the orientation of
the device. We then �nd a rotational o�set between the gyroscopic
heading and the magnetometer heading.

Finally, for magnetometer calibration, we investigate the real-
world tracking e�cacy of Ferlini et al.’s semi-automated calibration,
which uses occasional phone reference points to calibrate an earable
o�set [8]. This is based on the idea that when a person unlocks and
uses their smartphone, the phone and earable are aligned. Hence,
the reference heading from the phone (trustworthy) can be used
to correct the magnetometer of the earable. We emulate this by
collecting potential calibration points only every 15B . Through pre-
liminary testing, we de�ne a regime to maintain a rolling window of
up-to �fteen calibration points, but completing a full re-calibration
if we have encountered a full rotation (when the heading rolls over
from 359° to 0° or vice versa).

4.2 Heading Estimation
Our results suggests the best heading estimation comes from simply
using the calibrated magnetometer:

k = arctan
<~

<G
(4)

To improve the accuracy, we added tilt compensation, to account for
the fact that the earth’s magnetic �eld does not run perpendicularly
to the surface other than at the equator. We do this by �nding
pitch and roll (q and \ , respectively) from the accelerometer, when
stationary.

q = arctan
0~
0I

(5)

\ = arctan
�0G

0~ sinq + 0I cosq
(6)

\ and q are then used to rotate the magnetometer readings to the
�at plane, where \ = q = 0
Whilst o�ering higher accuracy, the magnetometer-only approach
su�ers from a potentially lower reliability when a calibration fails.
We, therefore, combined the magnetometer-only heading with the
gyroscope-only heading by mean of a complementary �lter. U is
set to 0.8 � C

400 .

k = (0.8 � C

400
) · heading_gyro + (0.2 + C

400
) · heading_mag

(7)

Concretely, we trust the gyroscope more at the beginning. Over
time, the magnetometer calibration is likely to be more re�ned
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and, at the same time, the gyroscopic bias may arise. Hence the
increased trust on the magnetometer.

4.3 Displacement Estimation
For the displacement estimation, we adapted Lu et al.’s PDR ap-
proach [17] to identify the stride. We use a constant stride length
de�ned by the height of the user:

Stride_Length = 0.43 · height (8)

To �nd each stride, we used the following algorithm:
• Low-pass �lter accelerometer norm with 3Hz cut-o� fre-
quency.

• Find peaks (local maxima) of the �ltered data.
• Find peaks with topographic prominence above a threshold.

Given the time of each stride, we �nd the distance moved per
timestamp and the change in position. For each stride occurring
between timestamp 8 and 9 :

3C 28,..., 9 =
Step_Length

9 � 8 (9)

Then, for each timestamp:

SC =
✓
(CG
(C~

◆
= SC�1 +

✓
3C coskC
3C sinkC

◆
(10)

4.4 Sensor Fusion
In combining the data from the two earables, we consider methods
to improve the accuracy and reduce the power consumption of the
tracking.

To improve the accuracy, we combine the headings of the two
earables with a particle �lter. The complete algorithm for accurate
tracking using two earables can be summarized as:

• Calibrate both earables independently.
• Find the heading at each timestamp for each earable using
a complementary �lter of gyroscopic and magnetometer
heading.

• Combine the headings with a particle �lter to identify the
most probable heading at each timestamp.

• Find the stride time according to each earable with Algorithm
1. Average these for both earables.

• Find the position according to Equation 10.
To reduce the power consumption, we propose two methods.

First, we consider dropping the sampling frequency of one earable
(to 5Hz/ 10Hz), whilst maintaining the frequency of the other at
20Hz. We demonstrate that the battery life would increase by 33
minutes when dropping the data frequency from 20�I to 10�I,
increasing by another 17 minutes going to 5�I. In the second
method, we use GPS updates every 30 seconds. We take the error
model of GPS to be a Gaussian distribution with f = 3.9< since
the US claim a 95% accuracy of 7.8< [26]. This is used as the re-
sampling probability for a positional particle �lter. This allows us
to maintain a maximum average error of 15<. Therefore, by using
the current �gures from a NEO-6 GPS module, the ability to return
the GPS to idle (when a lock is maintained) before using it at high
performance for 1B would reduce the power usage of a smartphone
positional tracking system by 65%.

4.5 Audio Feedback
To demonstrate a potential use-case for tracking using earables,
we created an iPhone application to help guide users to a target
heading. The di�erence between the calibrated heading and the
target heading was found and converted into a tone as follows:

5 = 2750( 180 � heading_di�
180

) + 250 (11)

By turning their head, the user could audibly gain an understanding
of the correct direction, with the tone getting higher in pitch as
they are facing the right direction.

5 DATA COLLECTION
We recruited six healthy subjects (balanced in gender). The par-
ticipants wore two earable prototypes, one per ear, and held an
iPhone in front of them. The system logged 9-axis IMU data and
reference heading data from the iPhone. We collected data while
the users walked two di�erent circuits. The �rst was indoors, walk-
ing up and down a 10< corridor �ve times. The second involved
walking outside, where the levels and composition of noise would
di�er, around a 750< route. In both cases, the test was run twice.
The experiment was granted permission by our university’s ethics
committee.

Figure 5: Subject completing the indoor portion of user
study (left) and outdoor portion (right).

6 EVALUATION
We test our system on two di�erent metrics. The �rst is the di�er-
ence between the predicted heading and the ground truth reference
heading. These are averaged across all the subjects. We also look at
the drift in tracking position over time (in <

B ). Since GPS could not
be used to provide ground truth for the indoor test, both the indoor
and outdoor tests were designed to start and end at the same point.
Hence, the drift is the normal of the �nal predicted position divided
by the testing time.

6.1 Single Earable Tracking
We �rst evaluate our calibration framework, showing that the ac-
celerometer calibration, magnetometer calibration and gyroscope
calibration methods performed statistically signi�cantly better (us-
ing a paired t test with U = 0.05) than having no calibration, irre-
spective of the method used for heading estimation. In particular,
calibrating the magnetometer leads to a 38% improvement over no
calibration. We also demonstrate the e�cacy of our complementary
�lter-based heading estimation method, showing how it achieves
amongst the lowest heading and displacement errors with lowest
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Table 1: Results comparing heading error for di�erent head-
ing estimation methods.

Heading Error / ° Displacement Error /<B�1

Average Standard
Deviation Average Standard

Deviation
Magnetometer only 15.1 15.7 0.133 0.0354
Gyroscope only 21.9 15.7 0.194 0.0217
Madgwick Filter 19.5 15.7 0.228 0.0423
Fourati Filter 21.9 16 0.181 0.0275
Complementary
Filter 15.8 14.0 0.132 0.0214

Table 2: Results comparing displacement error for di�erent
displacement estimation methods.

Kinematics Step Length Estimation
Heading Error / ° Displacement Error

/<B�1
Displacement Error
/<B�1

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

Magnetometer only 15.1 15.6 2.32 0.769 0.133 0.0354
Gyroscope only 21.9 15.7 2.69 1.11 0.194 0.0217
Madgwick Filter 19.4 15.7 3.66 1.55 0.228 0.0423
Fourati Filter 21.9 16 2.42 1.14 0.181 0.0275
Complementary Filter 15.8 14.0 2.63 0.538 0.132 0.0214

standard deviations (Table 1). This denotes the intuition of weight-
ing the accuracy of magnetometer methods, with better reliability
worked well. In particular, it statistically signi�cantly outperforms
existing sensor fusion algorithms such as Madgwick and Fourati
�lters. Further, we compare our displacement estimation method
against a simple kinematics approach where the velocity is main-
tained over time, not exhibiting a velocity drift that was shown by
the kinematics method. Table 2 shows how the proposed method
outperforms the kinematics one.

Figure 6: Example of outdoor tracking path.

Figure 6 reports an example path found by tracking a single
earable on the outdoor test, showing how our method for single
earable tracking performed very well, with a minimum average
tracking drift of around 0.15<B .

6.2 Two Earable Tracking
Table 3 demonstrates how combining the data from both earables
statistically signi�cantly outperforms using one earable. This dif-
ference is more notable outside, likely due to the additional noise.
Our results (Table 4 and Figure 7) suggest that dropping the data
frequency of one earable generally adversely impacted the displace-
ment error. For indoor tests, there was a statistically signi�cant
di�erence going from 20�I to 10�I and 10�I to 5�I, however,

Table 3: Results for combining both earables when particle
�ltering the heading.

Indoors Outdoors
Final Displacement
Error /<B�1

Final Displacement
Error /<B�1

Average Standard
Deviation Average Standard

Deviation
Left Earable 0.173 0.096 0.181 0.025
Right Earable 0.135 0.081 0.170 0.082
Reference Heading 0.077 0.038 0.104 0.061
Both Earables 0.119 0.089 0.021 0.039

Table 4: Results for mixing timings for earables.

Indoors Outdoors
Final Displacement
Error /<B�1

Final Displacement
Error /<B�1

Average Standard
Deviation Average Standard

Deviation
Left Earable 0.173 0.096 0.226 0.025
Right Earable 0.135 0.081 0.139 0.082
Reference Heading 0.077 0.038 0.168 0.061
Both 20Hz 0.119 0.089 0.106 0.039
One 20Hz, one 10Hz 0.128 0.094 0.227 0.102
One 20Hz, one 5Hz 0.156 0.081 0.204 0.049
One 20Hz, one 2.5Hz 0.185 0.119 0.242 0.119

there was no di�erence going from 5�I to 2.5�I. Additionally, the
results for 10�I and 5�I still performed better than one earable in-
dividually. For the outdoor tests, the changes in data frequency had
a less obvious e�ect. There was no clear trend with the reducing the
second earable’s frequency. However, for all frequency reductions,
there was a signi�cant negative impact. We suspect that this arose
from an increased background noise that came from the outdoor
environment. This noise meant that additional measurements were
important for tracking accuracy.

Figure 7: Tracking drift when mixing timings of earables.

7 RELATEDWORK
Earable research is living a momentum [6]. In the literature earables
have been used for a number of applications ranging form head mo-
tion tracking [8, 9], to inertial sensing for activity recognition [15]
and step counting [24], acoustic sensing [18], and a number of mo-
bile health applications. A few (non comprehensive list of) examples
are dietary habits monitoring [1–3], teeth grinding (Bruxism)/jaw
clenching [27] detection, body-core temperature and blood pressure
monitoring [4], in-ear photoplethysmography (PPG) [22, 23], and
sleep monitoring [21]. In this work, for the �rst time, we leverage
earables to build an end-to-end navigation system.

There is a signi�cant body of related work for inertial navigation.
This includes papers by Shen et al. [28], Woodman et al. [34], and
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Kok et al. [16] who create full INS using 9-axis IMUs. There are
also signi�cant works which focus on speci�c components of the
process, some for wearable devices. Won et al. [33], Frosio et al. [11]
and Skog et al. [30] look at accelerometer calibration. For gyroscope
calibration, there is signi�cant work on calibration methods that
require precise turntables, including work by Yang et al. [35] and
Chen et al. [5]. Finally, for magnetometer calibration, there is work
by Renaudin et al. [25]. We instead use the method de�ned for
earables by Ferlini et al. [8]. For heading estimation, there are
numerous approaches, some of which are considered in this paper.
These include methods by Madgwick et al. [19] and Fourati et al.
[10]. Other prominently used methods include Mahony et al. [20]
and QUEST [7]. For displacement estimation, there is previous work
on methods which work well for wearables, using features of hand
movement [28], and foot movement [13] to improve performance.
However, to the best of our knowledge, there is no existing work
which carries out any inertial navigation on earables.

8 FINAL REMARKS
In this work we introduce PilotEar, a novel framework for earable-
based inertial navigation. PilotEar is capable of achieving a drift
of as little as 0.11<B , when fusing the data coming from both ears.
Our work de�nes an e�ective calibration schema, as well as pre-
cise heading and displacement estimation methods. Ultimately, we
believe that PilotEar, providing acoustic feedback, could o�er sig-
ni�cant bene�ts for navigation, particularly for visually impaired
people.
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