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ABSTRACT
Facial expression recognition has been widely explored to demon-
strate people’s emotional states. However, existing systems primar-
ily rely on external devices which seems less accessible and e�cient.
To this end, we propose PPGface, a ubiquitous facial expression
recognition platform that leverages earable devices with built-in
PPG sensor. PPGface understands the facial expressions through
the dynamic PPG patterns resulting from facial muscle movements.
Through several comprehensive studies, this work validates a great
potential to be employed in future commodity earable devices.
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1 INTRODUCTION
As more viewers are moving from traditional pay-TV to streaming
market trend, many media and service providers have explored
∗This is the corresponding author (zjin@bu�alo.edu).
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di�erent approaches to capture users’ emotional reactions on the
�y through video watching habits [2]. Facial expressions have been
deemed as the universal non-verbal language to express internal
emotional states, which are also accompanied by unconscious body
postures. Although there are few approaches to understand facial
expressions, they either raise privacy issues (computer vision-based)
or require external hardware setup close to the target user (WiFi-
based). To enable a more privacy-preserving and ubiquitous system,
we propose PPGface, which leverages in-ear PPG signals with com-
plementary accelerometer data. Speci�cally, PPGface understands
di�erent facial expressions through dynamic PPG patterns which
are altered by the facial muscle motions where the signals are col-
lected inside the ear.

2 RELATEDWORK
Computer vision (CV) based Facial expression recognition (FER)
system is one of the most intuitive way to recognize di�erent facial
expressions. Zeng et al. [5] proposed the deep sparse autoencoders
(DSAE) which extracts meaningful features in an unsupervised
manner.

Besides the CV-based approach, researchers employed di�erent
sensing modalities to build FER system. For example, Chen et al.[1]
introduced a WiFi based facial expression recognition system to
classify six di�erent emotions by using a laptop and three antennas.
In addition, Gruebler et al. [3] proposes a wearable device embedded
with an EMG sensor and shows that the device can continuously
track smiling and frowning. Although some perform relatively good,
it is unrealistic to setup extra hardware devices while tracking facial
expressions or impractical to attach multiple sensors to the face in
daily lives.

Researchers have employed PPG signals to measure cardiac ac-
tivities such as heart rate or blood pressure. Due to the fact that
PPG signals are also vulnerable to motion artifacts, previous studies
also focused on removing those motion artifacts. Recently, unlike
previous research objectives, studies have started to re-purpose the
PPG motion artifacts instead of regarding them as noises. Zhao et
al. [6] proposed a gesture recognition system using PPG signals
and motion sensors embedded in a wrist worn device that can
discriminate �nger movements.
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Figure 1: PPGface system overview

Figure 2: The depiction of the sensor

3 PPGFACE SYSTEM DESIGN
As shown in Fig. 1, our proposed FER system, PPGface, is to un-
derstand the user’s di�erent facial expressions by fusing both the
behavioral (IMU signals from spontaneous body posture) and phys-
iological (PPG signals from the facial muscle movement) patterns.

First, the device measures the in-ear PPG and accelerometer
signals when user makes an expression. The measured signals
show distinctive patterns between the resting stage and when the
user makes a facial expression. In addition, if the user performs
other physical activities which are irrelevant to facial expressions,
such as yawning or swallowing saliva, these unrelated signals are
detected and removed for the further steps.

After the event detection step, we apply detrend technique to
remove the DC components caused by respiration followed by the
bandpass �lter, which �lters out both the high and low frequency
components to preserve the characteristics of both the facial ex-
pressions and related spontaneous body postures.

The dynamic signal preprocessing step involves two sub-stages:
segmentation and detection. First, the peak detection algorithm
and continuous wavelet transform (CWT) technique are used to
select possible candidate sets of start and end points of the PPGface
signals. By analyzing these signals, the system is able to detect the
facial expression activity events, given the �nal start and end points
of each segment corresponding to the facial expression activities.

At last, preprocessed signals will be the inputs to the classi�ca-
tion module. To overcome the limited amount of data, we apply
the following data augmentation methods: Rotation, time-warping,
and scaling techniques. Then, multimodal ResNet is used to extract
the representative features and classify seven di�erent facial ex-
pressions. The user’s pro�le is generated to classify seven facial
expressions during the training stage. During the testing, PPGface
goes through feature pro�ling to classify any unseen data based on
the pre-train model.

4 EXPERIMENTAL SETUP AND RESULTS
In this study, we deployed MAXIM86161EVSYS evaluation kit [4] as
shown in Fig. 2. The sampling rate of three LDEs (i.e., green, infrared

(a) User-dependent case (b) User-independent case

Figure 3: Confusion matrix of seven universal facial expres-
sions. (a) user-dependent, (b) user-independent case.

(IR), and red) was set to 128 Hz. Along with the LEDs, the sensor
is also equipped with 3-axis accelerometer sensors synchronized
with PPG sensor.

We evaluate the user-dependent performance of the PPGface in
terms of classi�cation accuracy. PPGface achieves 0.935 accuracy
(STD = 0.086), 0.951 precision (STD = 0.086), 0.934 recall (STD =
0.074), and 0.934 f1-score (STD = 0.094) (STD: Standard Deviation).
It is observed from Fig. 3a that accuracy of fear and surprise is lower
than other expressions, which is because facial muscles to express
those expressions overlap a lot.

We wanted to explore more whether PPGface is also able to
distinguish well under the user-independent case. In this case, we
combined each facial expression without considering the user label.
Performance of the PPGface’s accuracy is 0.848, precision is 0.854
(STD = 0.048), recall is 0.854 (STD = 0.074), and f1-score is 0.842
(STD = 0.054). Performance shows lower accuracy than the user-
dependent case due to a di�erence among each user when making
facial expressions which can be shown from Fig. 3b.

5 CONCLUSION
We introduce PPGface, a novel approach to understand di�erent
facial expressions by leveraging unique in-ear PPG variations with
the aid of an accelerometer. It is believed that this work has a po-
tential to provide insight into non-intrusive in-ear sensing research.
In the future, we plan to design customized prototype, enhance the
versatility of PPGface, and examine the permanence and robustness
from a larger and more diverse subject pool.
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ABSTRACT 
Smart earables offer great opportunities for conducting ubiquitous 
computing research. This paper shares its reflection on collecting 
self-reports from runners using the microphone on the smart eSense 
earbud device. Despite the advantages of the eSense in allowing 
researchers to collect continuous voice self-reports anytime 
anywhere, it also captured noise signals from various sources and 
created challenges in data processing and analysis. The paper 
presents an initial taxonomy of noise in runners’ voice self-reports 
data via eSense.  This is based on a qualitative analysis of voice 
recordings based on eSense’s microphone with 11 runners across 
14 in-the-wild running sessions.  The paper discusses the details 
and characteristics of the observed noise, the challenges in 
achieving good-quality self-reports, and opportunities for 
extracting useful contextual information. The paper further 
suggests a noise-categorization API for the eSense or other similar 
platforms, not only for the purpose of noise-cancellation but also 
incorporating the mining of contextual information.  
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1 INTRODUCTION 
Smart	 earables	 offer	 great	 opportunities	 for	 experience	

sampling	and	collection	of	user	self-reports	 [1]	 in	ubiquitous	

contexts.		Traditional	experience	sampling	methods	(ESM)	that	

use	 mobile	 phone	 based	 applications	 require	 people	 to	

physically	interact	with	a	phone	multiple	times	[2].	This	is	not	

very	practical	when	collecting	self-reports	from	runners	while	

running	because	runners	use	their	hands	and	arms	to	maintain	

balance	and	movement	flow.	Smart	earbuds	can	offer	a	hands-

free	experience	 for	people	 to	self-report	via	voice	recordings	

[3].	Runners	receive	ESM	prompts	via	earbud	speakers	and	use	

speech	 to	 self-report	 back	 to	 the	 earbud	microphone,	which	

creates	 less	 physical	 or	 biomechanical	 interference	with	 the	

runner’s	body	movement	[4].	Also,	earbuds	are	lightweight	and	

widely	 accepted	 by	many	 runners	 to	 consume	music	 during	

running.		

In	our	study,	eSense	was	used	to	deliver	an	ESM	schedule	and	

to	record	verbal	self-reports	of	feelings	of	runners	at	run	time	

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specific permission and/or a 
fee. Request permissions from Permissions@acm.org. 
 
UbiComp/ISWC '22 Adjunct, September 11–15, 2022, Cambridge, United Kingdom  

© 2022 Association for Computing Machinery. 

 

ACM ISBN 978-1-4503-9423-9/22/09…$15.00  
https://doi.org/10.1145/3544793.3563421  



UbiComp/ISWC	'22	Adjunct,	September	11–15,	2022,	Cambridge,	UK T. Bi et al. 
	

 
 

in	the	wild.	eSense	is	a	multi-sensory	earable	platform	that	is	

widely	used	in	the	HCI	research	community	[5,	6]	for	collecting	

audio	 recordings	 via	 its	 embedded	 microphone.	 Overall,	 11	

runners	(five	males,	and	six	females)	had	a	total	of	14	running	

sessions.	Nine	of	the	runners	completed	only	one	session,	one	

runner	completed	two	sessions,	and	another	runner	completed	

three	sessions.	The	duration	of	running	sessions	(and	eSense	

data	recording)	averaged	34.7	±	15.1	minutes.	The	researcher	

guided	participants	during	 the	5-min	 trail	 session.	The	study	

did	 not	 control	 the	 running	 environment,	 runner	 ability,	 or	

runner	performance.	Participants	were	given	with	flexibility	to	

run	anywhere	at	any	self-selected	pace.	For	more	details	on	the	

data	collections	and	other	aspects	of	the	work	see	[3,	4].		

Despite	 the	 earbuds	 offering	 a	 more	 ubiquitous	 and	 less	

intrusive	 ESM,	 we	 faced	 challenges	 in	 data	 processing	 and	

analysis	 due	 to	 the	 noise	 in	 the	 captured	 audio	 data.	 To	

characterize	the	noise	sources	and	their	information	value,	we	

used	Nvivo	[7]	to	label	all	potential	noise	information	and	then	

qualitatively	analyzed	the	characteristics	of	all	potential	noise	

information.	The	noise	coding	process	is	mainly	based	on	the	

first	author’s	listening	and	interpretation	of	audio.	It	also	used	

the	 author’s	 observation	 and	 contextual	 notes	 taken	 during	

data	collection	process,	i.e..,	observation	of	the	runner's	apparel	

and	accessories	 through	 the	study	session	when	participants	

run	 indoor	 or	 at	 reachable	 distance	 outdoor.	 The	 following	

sections	will	present	an	initial	taxonomy	of	the	noise	observed	

in	the	runner	voice	self-reports.		

2 A TAXONOMY OF NOISE IN RUNNERS’ 
VOICE SELF-REPORTS 
As	shown	in	Table	1	(see	next	page),	this	taxonomy	consists	of	

14	 noise	 categories:	 Car	 noise,	 Traffic	 noise,	 Sound	 of	 foot	

strike,	Outdoor	terrain	noise,	Earbuds	rubbing	noise,	Breathing	

sound,	 Clothes	 rubbing	 noise,	 Wind	 noise,	 Personal	 item	

vibration	 noise,	 Treadmill	 machine	 noise,	 Foot	 strike	 and	

treadmill	impact	sound,	Animal	sound,	Passenger	talking,	and	

Shop’s	speaker	noise.		

Each	 noise	 category	 is	 associated	 with	 its	 relevant	 running	

context	(e.g.,	road	run,	gym	treadmill	run).	For	each	category,	

the	taxonomy	also	includes	the	characteristics	and	factors	that	

influence	 the	 impact	 of	 the	 noise	 (e.g.,	 pitch,	 volume,	 wind	

direction).	It	also	classifies	whether	the	noise	is	synchronized	

with	the	run,	i.e.	whether	or	not	the	noise	is	concomitant	with	

the	run.	In	addition,	each	category	is	evaluated	with	respect	to	

its	 impact	on	the	quality	of	voice	self-reports.	For	example,	a	

noise	category	is	labelled	as	high	impact	if	it	severely	renders	

the	 voice	 recording	 difficult	 to	 be	 understood	 and	 hence	

transcribed.		

The	noise	 category	 itself	 as	well	 as	 the	 characteristics	of	 the	

noise	can	be	useful	contextual	info	for	understanding	the	noise	

experience,	e.g.,	outdoor	surface	vs	 treadmill	 surface	enables	

detection	 of	 running	 context,	 animal	 sounds	 might	 explain	

references	to	animals	in	self-report,	frequency	of	foot	strike	can	

be	useful	in	capturing	fatigue	or	pacing,	etc.	

	

 
Table 1: Taxonomy of noise in runners’ voice self-reports 

 
Noise type Characteristics & Factors Synchronized 

with running? 
Running  
context 

Impact on  
speech 
recognition 

Car noise Scrapping or chirping sound when a car passes; 
Increasing pitch when the car is approaching; 
Decreasing pitch when the car is driving away; 
Horning sound; 

No Road run High 

Traffic noise Motorbike engine noise; 
Car engine noise; 
Police car or emergency car alarm sound 

No Road run 
Park run 

High 

Sound of foot strike High-rhythm sound during a fast run; 
Low-rhythm sound during a slow run; 
High volume sound on heavy landing; 
Low volume sound on light landing; 
Heel-to-front transition sound 

Yes Road run 
Gym run 

High 

Outdoor terrain noise Road; Running Track; Grass; Trail; Treadmill Yes All run High 
Earbuds rubbing noise sSense earbuds are unstable in intense physical 

activities. 
The rubbing noise has a very high frequency. 

Yes All run High 
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Table	1:	Taxonomy	of	noise	in	runners’	voice	self-reports	(cont.)	
	

Noise type Characteristics & Factors Synchronized 
with running? 

Running  
context 

Impact on  
speech 
recognition 

     
Breathing sound Inhale and exhale sound different. Yes All run High 
Clothes rubbing nose Same frequency & rhythm as food strike. 

Chuffing noise from arm, hands, legs 
Yes All run High 

Wind noise Headwind; downwind; crosswind 
Wind direction causes different noise levels. 
Wind direction interacts with voice volume. 

No Outdoor run High 

Personal item vibration noise Keys; Earrings; Necklaces Yes All run High 
Treadmill machine noise Treadmill belt noise: squeaking, screeching and 

whining noises; 
Treadmill motor noise; 
High frequency & High volume; 
Other gym machine noise 

Yes Gym run High 

Foot strike and treadmill 
impact sound 

Landing sound volume; 
Soft or heavy landing; 
High speed creates high pitched noise from treadmill 
machine; 

Yes Gym run High 

Animal sound Birds sound, e.g., seagulls No Outdoor run Low 
Passenger talking Group talk vs individual talk 

lower frequency voice vs higher frequency voice 
No Road run 

Gym run 
High 

Shop’s noise Music; Ads No Road run High 
	

	

3 DEMONSTRATIONS OF AUDIO AND NOISE 
SIGNALS IN A RUNNER’S VOICE SELF-
REPORTS 

The	 taxonomy	 above	 shows	 that	 the	 noise	 observed	 had	

different	characteristics	and	were	typically	high	impact.	Here,	

we	 further	 provide	 visual	 representations	 of	 the	 raw	 audio	

highlighting	the	noise	signals,	using	the	software	Audacity	[8],	

based	on	the	data	captured	from	one	of	the	running	sessions	

introduced	 in	 Section	 2	 as	 a	 case	 study.	 These	 visual	

representations	 aim	 to	 1)	 illustrate	 not	 only	 how	 different	

noise	categories	and	their	characteristics	impact	the	raw	audio	

signals,	and	2)	illustrate	how	raw	audio	and	noise	signals	could	

infer	meaningful	information.		

Figure	1	shows	the	full	voice	recording	for	the	running	session.	

In	 this	 recording,	 all	 sounds	 (voice	 and	 noise	 signals)	

overlapped,	 which	makes	 it	 difficult	 to	 recognize	 a	 runner’s	

speech.	Figure	2	shows	an	excerpt	(approximately	3	minutes)	

of	 the	 full	 voice	 recording	 in	 Figure	 1.	 In	 Figure	 2,	 we	

distinguished	between	noise	signals	and	speech.	Voice	signals	

when	the	runner	was	talking	(segment	C	 in	the	 figure)	occur	

throughout	the	excerpt.	Meanwhile,	there	are	aural	occlusions	

at	several	points,	e.g.,	from	noise	of	one	foot	(segments	A	in	the	

figure)	 or	 other	 (segments	B	 in	 the	 figure)	 landing.	 The	 feet	

strike	noise	(segments	A	and	B)	overlaps	with	the	voice	signal	

(segment	 C).	 Further,	 the	 noise	 (segments	 A	 and	 B)	 are	 of	

higher	 volume	 than	 the	 voice	 (segment	 C),	 which	 makes	 it	

challenging	 to	extract	 the	voice	 content	 from	 the	overlapped	

area.		

Beyond	 the	 negative	 implications	 of	 the	 noise,	 we	 deduced	

potentially	 valuable	 information	 from	 them.	 For	 instance,	 as	

can	be	seen	in	Figure	2,	segment	A	always	has	higher	volume	

than	segment	B,	which	suggests	 that	 this	 runner	may	have	a	

higher	landing	impact	in	one	foot	than	in	the	other.			



3 DISCUSSIONS 
As	 shown	 in	 Table	 1,	 noise	 in	 runner	 voice	 self-report	 is	

complex	but	rich	 in	 information.	Although	we	applied	simple	

noise	reduction	techniques	offered	by	Audacity	[9],	the	results	

were	not	satisfactory	enough	to	produce	a	good-quality	voice	

recording.	This	 is	due	to	 the	 irregular	pattern	of	some	of	 the	

noise	 such	 as	wind	 noise,	 traffic	 noise,	 and	 noise	 from	 road	

surfaces	with	variations.	In	addition,	the	volumes	of	step	and	

strike	noise	were	much	higher	 than	 the	 runner’s	 voice.	 	 The	

noise	 from	the	earbuds’	rubbing	was	even	stronger	as	 it	was	

the	closest	to	the	microphone.	Such	factors	and	characteristics	

make	 it	 challenging	 to	 apply	 existing	 noise	 reduction	

techniques.		While	our	analysis	and	discussion	is	limited	in	that	

we	did	not	review	how	existing	noise	cancellation	technologies	

may	address	the	challenges	that	the	observed	noise	and	their	

characteristics	 pose,	 our	 findings	 outline	 critical	 issues	 that	

arise	in	running	scenarios,	some	of	these	issues	may	be	unique	

to	ESM	in	running	and	may	not	be	observed	in	other	use	cases	

(e.g.	listening	to	music	during	outdoor	walking,	private	phone	

call	in	a	public	space)	that	noise	cancellation	technologies	will	

typically	target.	

The	proposed	 taxonomy	 sheds	 a	 light	 on	what	 type	 of	 noise	

existed	in	the	running	context,	and	the	summary	of	features	of	

each	 noise	 category	 can	 be	 useful	 to	 guide	 development	 of	

noise	reduction	API	(or	real-time	noise	cancellation	software)	

that	address	the	specific	scenario	of	running	ESM	or	ESM	in	the	

wild	 in	 general.	 	 For	 instance,	 as	 highlighted	 in	 Table	 1,	

headwind,	downwind,	or	crosswind,	not	only	due	to	the	natural	

wind	 direction	 but	 also	 the	 running	 direction	 of	 a	 runner	

themselves,	 degrades	 the	 quality	 of	 voice	 signal	 as	 wind	

vibrates	air	particles	that	the	voice	vibrates	[10].	Further,	while	

crosswind	 direction	 could	 additionally	 alter	 the	 direction	 of	

voice	transmission	to	one	side;	headwind	could	collide	with	the	

voice,	 more	 than	 tailwind.	 Noise	 cancellation	 and	 voice	

augmentation	 techniques	 could	 better	 accommodate	 such	

factors,	 to	 help	 researchers	 generate	 a	 better-quality	 voice	

recording	via	eSense	or	other	similar	platforms.		

However,	 noise	 can	 have	 value,	 particularly	 in	 providing	

contextual	information	and	personal	affective	experience.	For	

instance,	 wind	 noise	 can	 provide	 information	 useful	 for	

contextualizing	the	runner’s	experience	self-report.	Headwind	

noise	signals	can	be	different	from	downwind	noise,	whereas	

headwind	can	contribute	to	making	a	run	extremely	difficult.	In	

the	 transcribed	voice	 self-reports,	 a	 runner	 for	 example	 said	

“fight	 the	 headwind”	 which	 could	 indicate	 that	 they	 were	

struggling	or	putting	much	higher	effort	into	the	moment.	On	

the	 contrary,	 a	 runner	 “feels	 a	 bit	 easier	 now,	 with	 the	

downwind”.	Here	is	another	example,	a	runner	said,	“I	am	cold,	

	

	

Figure	1:	An	overview	of	a	runner’s	voice	self-report	while	running.	

	

Figure	2:	An	excerpt	of	a	runner’s	voice	self-report.	
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I'm	going	downhill	so	the	wind	catches	me,	I'm	sure	it	will	get	

better	shortly”.	Such	wind	direction	can	be	a	factor	that	makes	

a	 runner	 perceive	 the	 run	 as	 difficult.	 In	 such	 a	 situation,	

runners	might	benefit	from	some	sort	of	digital	cheering	that	

can	be	delivered	via	earbuds.	On	another	hand,	headwind	can	

also	 be	 a	 feel-good	 factor	 in	 the	 run.	 For	 instance,	 a	 runner	

referred	 to	wind	as	 “nice	 to	 run	 into	a	breeze	on	a	hot	day”.	

When	the	temperature	is	high,	but	wind	is	gentle	and	cool,	this	

could	be	a	moment	in	which	a	runner	mentally	enjoys	the	run.	

Therefore,	 wind	 noise	 can	 not	 only	 serve	 as	 a	 contextual	

measurement	 but	 also	 a	measurement	 for	 personal	 affective	

experience.	Similarly,	car	noise	can	infer	traffic	and	be	used	as	

a	 safety	 measurement.	 Digital	 reminders	 could	 be	 sent	 to	

runners	to	be	aware	of	traffic	if	they	are	running	on	the	road.	

Foot	strike	noise	even	has	more	information	that	can	be	used	

to	detect	a	runner’s	running	performance	such	as	cadence	and	

stride	type	(heel	stride,	middle	stride,	front	stride).	It	could	also	

be	 used	 to	 infer	 a	 runner’s	mental	 state	 again.	 For	 example,	

fatigue	could	make	a	runner	switch	to	more	heel	strikes,	which	

is	associated	with	a	higher	impact	on	the	ground	[11].		

5 CONCLUSIONS 
This	paper	reports	a	preliminary	taxonomy	of	noise	observed	

in	 voice	 recordings	 from	 runners	 during	 verbal	 self-report,	

based	 on	 a	 qualitative	 analysis	 of	 the	 audio	 recordings.	 The	

taxonomy	 includes	 the	 noise	 types,	 their	 characteristics	 and	

factors,	whether	the	noise	type	is	synchronized	with	running	or	

not,	 and	 how	 bad	 the	 noise	 affects	 the	 speech	 recognition	

quality.	 Our	 findings	 highlight	 need	 for	 noise	 investigation	

before	audio	data	collection	in	the	wild.	Our	taxonomy	further	

highlights	that	noise	can	be	both	negative	and	positive	factors.	

While	noise	clearly	undermines	extraction	of	the	desired	self-

report	 of	 experience,	 it	 has	 the	 potential	 to	 provide	 rich	

contextual	 information	 for	 deeper	 understanding	 of	 the	

experience.	 eSense	or	other	 similar	 smart	 earbuds	platforms	

will	be	more	valuable	when	equipped	with	modules	(e.g.,	API)	

capable	of	noise	reduction,	noise	categorization,	and	extraction	

of	 contextual	 information	 from	non-verbal	 aural	 signals.	The	

research	in	this	paper	is	still	in	early	stages	and	the	aim	of	this	

paper	 is	 to	 prompt	 discussion	 within/across	 relevant	 areas	

(human-computer	 interaction,	 audio	 engineering,	 machine	

learning).		
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Figure 1: enVolve (proposed framework) gathers IMU data using eSense from the listener and recognizes activities during an
online class. Then, enVolve calculates the level of interest and shows the speaker if the listener is involved or not.

ABSTRACT
Understanding the level of participation for a remote attendee in
an online meeting setup could signi�cantly improve the quality
of experience for virtual interaction. However, gauging audience
involvement over an online meeting becomes particularly challeng-
ing when the attendees prefer to turn o� the cameras. IMU data
have shown promising results in the past to pervasively monitor
users’ body language, including the determination of various bodily
gestures, postures, and facial expressions. This paper demonstrates
how earables could help address the stated problem. We provide a
motivational study to assess earables for detecting body language
corresponding to involved listeners. We further compare it with
other sensing modalities like smartwatches and smartphones and
accordingly develop a platform called enVolve. A lab-scale study
with 17 participants demonstrates the e�cacy of the proposed sys-
tem with an average F1 score of more than 80%.
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1 INTRODUCTION
Several verbal and non-verbal cues, such as gaze, gestures, and
posture, in a physical meeting setup help the speaker gauge the
audience’s involvement continuously. However, the recent trends
of online teaching-learning, virtual meetings, and webinars have
signi�cantly reshaped the core of human interactions, with the par-
ticipants not sharing a similar spatio-temporal context on a typical
online platform. This results in a signi�cant communication gap
regarding low cognitive perception between the speaker and the
listeners [3, 15]. This gap is often aggravated due to limited band-
width and poor network connectivity, thus compelling the users to
turn o� their webcams while attending an online meeting/lecture.
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Figure 2: (a) IMU data collection using earable, smartwatch, and smartphone. (b) Survey results of listeners performing
movements silently in an online conversation. (c) Survey results of listeners in terms of usage of ear-wears

Moreover, in an online multi-party setup, the audience generally
mutes themselves to avoid ambient noise, echo, and interference
with the speaker. This limits the usability of audio and video-based
approaches for estimating user involvement simply because of the
absence of conventional cues such as human gaze, hand gestures,
or body posture of the audience. Thus, assessing the listeners’ in-
volvement (whether the listener is following or able to follow the
talk) in an online meeting setup is particularly challenging for the
speaker. While conventionally, based on the visual cues, the speaker
could alter the content delivery style, it is di�cult to do so in an
online setup where the cues are absent. Consequently, the con-
versation may turn down to be dull and monotonous. Hence, this
demands the development of a mechanism that provides real-time
feedback to the speaker regarding listeners’ involvement in a visu-
ally intuitive fashion, thus making online-based content delivery
more fruitful to both the speaker and the listeners. In this context,
our paper explores using IMU (Inertial Measurement Unit) data
obtained from earables to detect di�erent cues generated by the hu-
man head and body manifestations. In recent times, earables have
drawn considerable interest amongst the research community for
analyzing user behavior and detecting visual cues such as human
gaze, hand gestures, and other verbal or nonverbal cues. The work
of [1, 6, 9, 12] has demonstrated that eSense [8] is sensitive enough
to identify not just head movements but minute changes in facial
muscles as well, which we believe are essential cues for gauging
listener involvement. Also, the signals emerging from the earable
are less prone to noise due to restrictions on the degrees of freedom
of the human head, making the signal much cleaner and usable
compared to that obtained from other wearables.

Selecting and identifying features that will help mimic verbal
and non-verbal cues is crucial to quantify listener involvement. In
this regard, as shown in Fig. 1, our system enVolve uses IMU data ob-
tained from eSense and detects facial expressions, head movements,
and body postures of the listener during online interaction and uses
these gestures to understand how well the person is involved in
the conversation and synced up with the speaker. The main idea
behind this implementation is that in virtual interaction, the silent
gestures of the listener act as a re�ection of acknowledgment; this
acknowledgment could be presented to the speaker as a visual aid to
understand the listeners’ involvement in the interaction. However,
developing a model to infer such acknowledgments is challenging
because the IMU data captured from the earables need to be mapped
to di�erent gesticulations at di�erent body parts (like facial muscles,

heads, upper body parts, etc.). The inference is needed to be drawn
from a collective analysis of such gesticulations. Interestingly, the
IMUs from the earables return a complex amalgamation of signals
from di�erent body parts. For example, a listener can simultane-
ously smile and nod their head, and the IMU produces a compound
signal from both gesticulations.

In this paper, we develop and implement enVolve, a framework for
monitoring the involvement of silent listeners in online meetings,
on eSense IMU-based earbuds. Here, eSense is chosen to collect the
accelerometer and gyroscope data for the listeners moving their
heads in di�erent orientations and paces. For the preliminary study,
we used 17 volunteers in the age of 20 � 25 (Female: 12, Male: 5)
and recorded 50 � 55 minutes of IMU data for each volunteer while
they attended online meetings (online classrooms). From this data,
we �rst explore whether earables are the better choice for inferring
the involvement level of silent listeners compared to other sensing
modalities like smartwatches and smartphones, and then develop
an initial model for the same by exploiting di�erent associated
features from the upper body part and facial movements of the
meeting participants.

In contrast to the existing works, the contributions of this paper
are as follows. (1) We identify features from gestures, such as head
movements, facial expressions, and body postures, that mimic ver-
bal and non-verbal cues and demonstrate the e�cacy of earables.
(2) Our preliminary evaluation reveals that enVolve identi�es over-
lapping features with reasonable accuracy (around 80%), typically a
complex problem for hand-worn wearables [16, 17]. (3) We present
our ongoing attempts toward developing a Google Meet extension
that provides the speaker with a visually intuitive interface to gauge
user involvement.

2 BIFURCATING COGNITIVE
INVOLVEMENTS: DOES EARABLE HELP?

It is not uncommon to �nd an involved and engaged listener in
an online meeting or lecture, to perform a�rmative body gestures
following the speaker’s progress. To mimic the o�ine classroom
process, the listeners’ spatio-temporal context must be shared with
the speakers. But, which features of the body movements are helpful
to capture the involvement of a listener? And, What is the best mode
of collecting/capturing these features?

To answer the �rst question, we surveyed around 500 students of
the Indian Institute of Technology, Jodhpur and the Indian Institute of
Technology, Kharagpur to understand the various features required
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for identifying the involvement of a silent listener in an audio-
only online interaction. The students who participated in the study
belong to undergraduate, postgraduate, and doctorate programs.
The participants’ ages lie between 18 to 40 years (mean: 20.77,
std: 7.49). Based on the survey results, it was observed that (a)
the listeners sit in an upright position when they are involved or
trying to get involved, (b) there are gesticulations in their facial
expressions, and (c) the listeners may acknowledge by nodding their
head, or may not nod if they are uninvolved. Thus, head movements,
body posture, and facial expressions become important features to
capture the spatio-temporal context of the listener. It is to be noted
that all of these movements are performed involuntary by most
of the participants (Fig. 2(b)). The survey also observed that just
a tiny percentage (6%) of the participants believe that they have
never indulged in gestures during an online meeting or lecture.

To answer the second question, we observe another outcome of
the survey, which reveals that 72% of the participants use earphones
while attending online lectures (Fig. 2(c)). This makes IMU-based
earables a natural instrumentation choice to understand listener
involvement levels. Other methods of collecting IMU data, such
as smartphones and smartwatches, have found widespread use
for human activity recognition. Notably, most of the features that
could be linked with the involvement levels of the listeners are
upper body features, which would be di�cult to capture using
smartphones or smartwatches simply because these are placed in
the user’s pockets or worn in hand. To test this hypothesis, we
instrumented some volunteers with an earable, smartwatch, and
smartphone each while attending an online lecture, as depicted in
Fig. 2(a). A cursory examination of the IMU data generated from
these devices (Fig. 3) shows that earables are more sensitive in
capturing the movements emanating in the upper body and hence
are ideal to be used in online meetings.We present a further detailed
analysis of this in Section 4.

Figure 3: Di�erent IMU Signatures captured from earable,
smartwatch, and smartphone for di�erent body movements
from one participant at the same timestamp for all devices.

Our �ndings and prior investigations [6, 8, 9, 12] have indicated
that visual clues of human body language, such as an a�rmative

Table 1: List of features considered for identifying involve-
ment in enVolve

Type of movement Feature Class

Facial
Inward movement in eyebrows and cheeks
No movement in eyebrows and cheeks

Outward movement in eyebrows and cheeks

Body LaidBack Body Posture
UprightBody Posture

Head Head movement in Horizontal Axis
Head movement in Vertical Axis

head shake (horizontal head movement), perplexed facial expres-
sions (inward cheek movement), or correct body postures (upright),
convey evidence of conversational involvement. Combinations of
these cues might be interpreted as elements of listener involvement
during a conversation. This paper proposes using head, body, and
facial expressions to measure listener engagement. Table 1 explains
these qualities.

3 ENVOLVE: SYSTEM DESIGN
enVolve comprises two modules: the listener engagement analyzer
and the speaker visualizer. First, we present the process for ana-
lyzing listener involvement, then how this data is shared with the
speaker via a visualizer. Both activities are basic, lightweight, and
take very little bandwidth, allowing them to be used online with-
out di�culty, even on a slow machine. Fig. 4 depicts the proposed
listener involvement analyzer’s processing pipeline.

/LVWHQHU�ZLWK��
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3UH��
3URFHVVLQJ
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$XJPHQWDWLRQ
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/HDUQLQJ
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Figure 4: enVolve pipeline for involvement identi�cation.

Pre-Processing: enVolve gathers 6-axis IMU data from the listener
eSense [10] and stores it in windows of 10 seconds. Noise and bias
must be removed from this data. This phase includes user identi�ca-
tion. Integration magni�es noise and bias readings, which impacts
the Global Projection (addressed next). Noise is spikes that can
be observed without listener movement. This discovery increases
the processing window, which improves estimates. Low-frequency
signals from head motions are eliminated.
Global Projection: IMU data is saved in its local reference frame;
however, movements can happen in such a way that they can cause
the default frame of reference to change. As shown in Fig. 1, the
head orientation varies according to the users’ movement. In order
to keep the axes global for all readings, the orientation of the IMU
device needs constant rotation. Thus, the data needs to be projected
in the global frame where constant changes in the axes can be seen.
We use an existing approach like [18] for this purpose.
Data Augmentation: Listeners’ features overlap heavily. When
a listener acknowledges by nodding, facial expressions help es-
tablish/represent participation in the dialogue. Machine learning
should separate these actions from the IMU signal. Di�erent data
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augmentations/views are created and fed to the models for bet-
ter learning. We use uniformly random 3D rotation, signal inver-
sion, and order 4 random scrambling for various views. Models
are trained with this augmented data. We found that data aug-
mentation improved the models’ capacity to discover similarities
between unknown and learned data with highly distinguishable
feature overlap.
Machine Learning: This phase focuses on the system’s machine
learning model, which learns to detect the numerous activity fea-
tures in Table 1 performed by the listener in real-time and shares
the prediction with the next step, Behavior categorization. A few
well-known machine learning models ((a) Convolutional Neural
Network (CNN), (b) Long short-term memory (LSTM), (c) Sup-
port Vector Machine (SVM), and (d) Decision Tree (DT)) have been
picked for proof of concept. Table 2 lists hyperparameters. After
preprocessing, we generate a three-dimensional array based on the
training set’s windows, window size, and channels. We use raw
signal data for CNN and LSTM (after preprocessing and data aug-
mentation). Others use feature engineering to get statistical and
frequency domain feature vectors. Fast Fourier Transform (FFT)
is applied to all frequency domain feature vectors. Mean, median,
standard deviation, energy measure, skewness, and kurtosis are
used to obtain new features. Six FFTs on original 6-axis features and
36 statistical operations on all features create 42 features. Table 1
lists 7 labels for head motions, body postures, and face movements.

Table 2: Hyperparameters of ML Models used

Model Layers Filters/Kernel Filter Shapes Batch Size Depth
CNN 3 32 30, 30, 32 16 -
LSTM 4 64 28, 28, 64 16 -
SVM - Linear 12,12 - -
DT - - - - 7

Behaviour Categorization: The pipeline’s behavior categorization
module gets Table 1’s collection of listener actions. This module em-
ploys a basic heuristic-based technique to link body postures, head
motions, and facial expressions, then apply a rule-based approach
to determine if a subject is engaging in a meeting’s talks during a
time window �. enVolve uses upright body posture as a marker of
involvement in its rule-based modeling. We associate body position
with head gestures and facial expressions to avoid confusion. This
module assumes active listeners have an upright posture, shake
their heads to acknowledge, and have involuntary facial emotions,
as observed from the survey presented in §2. Further, this module
works on the principles of sliding window over �, as it processes
the model’s outcome for every instance of that window and labels
either involved or not-involved based on the activities detected; it
manages a window of 10 seconds cumulative of all the cases.

The data from the listener involvement analyzer is communi-
cated with the speaker via a visualizer (Fig. 5), which gives feedback
on listener engagement. This visualizer works with Chrome and
Google Meet. The visualizer has three parts. First, it extracts the list
of google meet listeners and adds their involvement level. Second,
it assesses each listener’s level and adds a description under their
name. Third, it calculates the audience’s state as a pie chart and
delivers analysis to the speaker under the chart. For instance, as
shown in Fig. 5, a couple of listeners are lacking behind because

Figure 5: Visualiser providing information about the listen-
ers’ involvement level along with overall class status

their engagement level is low; however, at the same time, other
students have high engagement levels, creating an overall heavily
engaged audience. This visualizer only takes half of the display size
to convey the information and does not cause any disruption in the
�ow of the conversation from the speaker’s side.

4 IMPLEMENTATION AND EVALUATION
enVolve is built with compatibility with eSense, an IMU-based ear-
able device. The IMU data, collected at 50 Hz, is recorded through
an android application via Bluetooth. The proposed framework
enVolve’s core is implemented using Tensor�ow. The smartphone
IMU data is obtained from Asus Zenfone Max Pro M2, and the
smartwatch used for the same purpose is Moto 360. Since the data
collected is heavily imbalanced, the measuring scale used for this
study is the F1 score, which is a better alternative to judge a system’s
work when dealing with imbalanced data.

4.1 Data Collection
A lab-scale study was conducted at the campus of Indian Institute
of Technology, Jodhpur to collect the data for the experiment. 17
volunteers in the age range 20 � 25 were recruited to generate
the dataset for this study (mean age: 23.52, std age: 1.538, female:
12, male: 5, ethnicity: Indian). Fig. 2(a) shows the setup for vol-
unteers with device placement and the model of the device used
for collecting data; these volunteers did not participate in the sur-
vey conducted in section 2. For each volunteer, 50 � 55 minutes
of accelerometer and gyroscope readings are recorded. To boost
the dataset’s variance, �ve volunteers were allowed to surf the
Internet and view videos while listening to the speaker; the rest
were required to simply keep the browser open to listen to the
speaker. These volunteers were videotaped from two angles: (a)
front-facing using a laptop webcam and (b) mobile-mounted to cap-
ture the whole body. These recordings helped annotators mark the
dataset’s ground truth. Three non-participating annotators were
chosen. They observed participants’ body posture, facial expres-
sions, and head movements and marked involved or not involved
every second, correlating to accelerometer and gyroscope data in
the CSV �le. All three annotators marked the �nal ground truth, but
the majority voted. We computed Cohen’s kappa [14] and obtained
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Table 3: F1 Score, Precision, Recall scores
of testing algorithms for detecting engage-
ment activities

Algorithm F1 Score Precision Recall
Conv-NN 79.64 72.24 80.84
LSTM 77.68 73.65 89.60
SVM 68.82 73.84 84.43
DT 76.67 72.47 79.21

Table 4: Class wise F1 score of CNN for all
participants while detecting engagement
activities

Algorithm Class Name F1 Score Precision Recall

Conv-NN

Inward Facial Movement 78.13 71.77 80.34
Outward Facial Movement 80.67 77.15 79.27

No Facial Movement 76.25 68.87 77.49
Laid Back Body Posture 77.18 78.35 76.11
Upright Body Posture 72.97 60.16 70.87

Horizontal Head Movement 88.89 76.88 91.81
Vertical Head Movement 83.40 72.54 89.99

Average 79.64 72.24 80.84

Table 5: Class wise F1 score of CNN for all
disengaged participants

Algorithm Class Name F1 Score Precision Recall

Conv-NN Sur�ng the internet 70.17 68.49 77.33
Engaged in other activities 81.23 81.05 82.44

Average 75.65 74.07 78.44

a kappa value of 0.8 which indicates a good/substantial agreement
among the annotators.

4.2 Device Type Feasibility
Earables, smartphones, and smartwatches were tested in two ways.
First, �nd the gadget with the cleanest raw data. Second, Determine
the dataset’s usability. In these investigations, machine learning
algorithms (as mentioned in Section 3) were utilized to identify
features and total involvement scores based on IMU data. Our eval-
uation yielded the following results.

Figure 6: SNR over data cap-
tured over three devices for
identifying gestures

Figure 7: Dataset usability for
three devices, for identifying
gestures

4.2.1 Signal-to-Noise Ratio (SNR). Here we study the power sig-
nals observed and recorded from the three devices. Power spectral
density can be generated from an FFT of the IMU data [13]. For
the context of activity recognition, we compute the SNR from the
power spectral density as (#' = 20 log (

# , where ( is the power of
the signal for a time window C , and # is the noise power during the
previous time window C � 1. We divide the captured IMU signals
in 10sec windows for this computation. The constant 20 is used
in the above equation, as the signal strength measurements are in
watts (power). Fig. 6 shows the results favoring the earable with the
highest SNR value amongst all three devices for detecting target
activity features like the change in body posture, head gestures,
and facial expressions.

4.2.2 Usability of dataset recorded from multiple devices. Here we
study the usability of the dataset for upper body context recogni-
tion recorded from the three devices. We collected data from the
three modalities from 5 di�erent participants and ran the classi-
�ers for detecting various body movements shown in Table 1. The
ratio was taken from the collected dataset to ascertain how many
times we could identify the di�erent activities correctly and shown
in terms of % in Fig. 7. With the same parameters as shown in

Table 2, CNN and SVM were used to classify di�erent activities
from the data collected from all three devices. It can be seen from
Fig. 7 that smartphones and smartwatches are not quite sensitive
to recording the minute movements of facial muscles and seem
to lose signal power while reaching head movements. A similar
observation can be made from Fig. 3, that earables provide much
cleaner IMU signatures even for sensitive muscle movements. One
interesting observation can be seen that all three devices are more
than capable of identifying the body postures with high accuracy.

4.3 Performance Benchmarking of enVolve
enVolve was tested on two parameters: correctly identifying listen-
ers’ engagement level during online interaction using CNN, SVM,
LSTM, and DT (described in Section 3) and measuring the frame-
work’s runtime resource usage. The benchmarking compares the
system’s memory and bandwidth usage with and without the sug-
gested framework. Benchmarking shows the system’s real-world
performance and usefulness.

4.3.1 Model Performance. Table 3 summarizes the performance
of di�erent machine learning models in correctly inferring the
activities mentioned in Table 1, performed by the user during the
interaction. It can also be seen from the results and Fig. ?? that our
proposed framework can correctly identify multiple overlapping
features with a good F1 score of nearly 80%, along with a high
recall value. The results of the best performing model, i.e., CNN, is
expanded further, �rstly, in Table 4, which exhibits class-wise F1
score of all the classes mentioned in Table 1; secondly, in Table 5,
which exhibits class-wise F1 score of all the activities resembling
disengagement. Based on the predictions made by the machine
learning models, the behavior categorization module of the pipeline
(Fig. 4) can correlate these predictions with the state of the listener.

4.3.2 Benchmarking of enVolve. We benchmark the memory and
bandwidth consumption by enVolve to test its usability over hand-
held devices. This benchmarking has been done for over 5 subjects
in a live classroom setup. The online interaction was completely
audio mode from the listeners’ side; however, the speaker shared
a presentation while speaking. The online classes lasted for 50
minutes, during which the bandwidth and memory consumption
changed due to the speaker’s presentation sharing, which added
extra load on the browser to use more memory. The framework’s
use hasn’t greatly increased resource consumption, according to
this evaluation. After a few minutes of a minor increase from 8% to
27% RAM utilization, it achieved saturation. Overall Memory usage
increased by 10% for 50 minutes. Bandwidth use is similar, with an



UbiComp/ISWC ’22 Adjunct, September 11–15, 2022, Cambridge, United Kingdom Garvit Chugh, Suchetana Chakraborty, Ravi Bhandari, and Sandip Chakraborty

initial increment of 26%, saturation was achieved after a few min-
utes, and an overall 13% climb for 50 minutes. This benchmarking
provides enough evidence that the system in its current state is
useful and provides good foundational support for scalability.

5 RELATEDWORK
In recent times, inertial sensing through earables has gained promi-
nence in determining human activities and behavior [6, 10, 19].
The IMU data generated from earables such as eSense devices have
exhibited promising results in characterizing gestures like head
nodding, head shaking, chewing, speaking, etc. The user study
performed by Choi et al. [4], conducted with the help of earable
devices and wristbands, revealed head nodding and hand gestures
can be utilized to determine a meeting’s success. According to [4], a
meeting has three stages: initiation, group discussion, and turning
points. Hand and head gesture cues were calculated for these phases
with 79% accuracy. However, unlike enVolve, their study was not
concerned about providing feedback to the speaker. Also, the study
participants were involved in marking the ground truth, which can
break the �ow of the audience to perceive the lecture as they are fo-
cusing on �lling the survey during the lecture; hence, an automated
method is required. Another similar work [11] has attempted to
use earables to detect the participants’ head movements and body
posture in an online meeting. They, however, have not quanti�ed
the involvement level of the participants. Moreover, in this work,
the participants were also involved in marking the ground truth;
thus, the model may introduce subjectiveness in the evaluation.

Gashi et al. [5] have used earables to learn the movements of fa-
cial muscles to classify gestures such as smile, yawn, talk, confusion,
etc., with an F1 score of 84%. However, independent classi�cation
of head gesticulations, body posture, and facial expressions will
not address the problem of determining the level of involvement of
passive listeners in an online meeting. Although some of the past
e�orts [11, 20] have attempted using inertial sensing to gauge the
involvement of the meeting attendees, they lack in providing con-
tinuous feedback about the listeners to the speaker, which questions
the e�ectiveness of the solutions in a real-time scenario.

Other approaches such as [2] and [7] have tried to provide real-
time feedback and assistance by analyzing user behavior. However,
their methodology uses audio and video data, which requires addi-
tional computation and resources. Our implementation works as
a low-cost yet e�ective tool to analyze user behavior without sig-
ni�cantly adding or increasing the load on the system. To the best
of our knowledge, none of the existing works till now have tried
to correlate the speaker-listener using earables during an online
meeting in the absence of any acoustic-visual cues.

6 DISCUSSION AND CONCLUSION
enVolve demonstrates promising results in passively estimating the
involvement level of a silent listener in an online meeting using
the IMU data collected from eSense earable. Based on the positive
results from this study, several other objectives have risen, such as
an end-to-end system based on earables that can provide individual
and global learning, and the attention level of a speci�c user, while
improving the current visualizer to add more features. Another
potential objective is to detect or derive di�erent characteristics

of individual users, such as their emotional well-being, using the
same data. We plan to improve the current accuracy of the models
and implement a novel technique based on the learning objectives
of the models used in this study.

This investigation yielded relevant and fascinating �ndings. Cog-
nitive expressions vary by person. Such signals can di�er even for a
single human. In such instances, it’s di�cult for machines to learn
user context and personalize services. We need a gesture-invariant
technique to model the system to eliminate subjective bias from
individuals. Continuous and pervasive monitoring of behavioral
gestures and psychophysiological markers can give individualized
intelligent services on demand.
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ABSTRACT
Earables (ear wearable) are rapidly emerging as a new platform to
enable a variety of personal applications. The traditional authenti-
cation methods thus become less applicable and inconvenient for
earables due to their limited input interface. Earables, however,
often feature rich around the head sensing capability that can be
leveraged to capture new types of biometrics. In this work, we pro-
pose ToothSonic that leverages the toothprint-induced sonic e�ect
produced by a user performing teeth gestures for user authentica-
tion. In particular, we design several representative teeth gestures
that can produce e�ective sonic waves carrying the information of
the toothprint. To reliably capture the acoustic toothprint, it lever-
ages the occlusion e�ect of the ear canal and the inward-facing
microphone of the earables. It then extracts multi-level acoustic
features to represent the intrinsic acoustic toothprint for authenti-
cation. The key advantages of ToothSonic are that it is suitable for
earables and is resistant to various spoo�ng attacks as the acoustic
toothprint is captured via the private teeth-ear channel of the user
that is unknown to others. Our preliminary studies with 20 partici-
pants show that ToothSonic achieves 97% accuracy with only three
teeth gestures.
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1 INTRODUCTION
Earables are rapidly emerging as a new platform to enable a variety
of personal applications due to their rich around the head sensing
capability. There also have been increasing research e�orts to lever-
age earables to achieve tasks such as understanding our �tness and
sleeps, accessing information, identifying contextual information,
monitoring or tracking activities [2].

While earables show considerable promise, they also raise new
questions in terms of security. This is because much of the value
of the services o�ered by earables depends on the con�dential and
personal information they capture, process and transmit. However,
adapting traditional authentication from other wearables or mo-
biles can be challenging. Quite simply, earables lack a suitable input
interface to support rapid and reliable entry of passwords or most of
the traditional biometrics. Voice-based authentication is convenient
but has been proven vulnerable to voice spoo�ng attacks [6, 7].
Despite the issue, earables provide novel opportunities to improve
or redesign approaches to authentication due to their rich around
the head sensing capability. For example, recent work utilizes ear-
able to sense ear canal and its deformation [5] for authentication.
However, emitting acoustic sound to probe the ear canal could be
intrusive for those who are sensitive to high-frequency sound.

Figure 1: System �ow of ToothSonic.
In this work, we propose ToothSonic, a secure earable authen-

tication system that leverages the toothprint-induced sonic e�ect
produced by a user performing teeth gestures for user authentica-
tion. In particular, when teeth slide or strike against each other, part
of their mechanical energy is released in the form of sonic waves.
The harmonics of the friction- and collision- excited sonic wave are
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Figure 2: Tooth gesture and related biometrics.

dependent on the teeth composition, the dental geometry, and the
surface characteristics of each tooth [1]. The key insight is that the
sonic waves produce from a teeth gesture carry the information of
the toothprint. As every individual has a unique toothprint just like
our �ngerprint, two users perform the same teeth gesture will result
in distinct toothprint-induced sonic waves, which could be sensed
by the earables for user authentication. Compared with traditional
biometrics, it has several advantages.

Anti-Spoo�ng. The friction- and collision- excited sonic waves
are dependent on the toothprint, which is hidden in the mouth and
skull, the head and skull. It is thus more resilient to spoo�ng attacks
compared with traditional biometrics (e.g., �ngerprint, face, and
voice) that could be exposed to others. In addition, the sonic waves
travel through the head tissues and skull channel, which hold the
individual uniqueness acting as a hidden and encrypted channel
that modulates the sonic waves. ToothSonic is thus resistant to
sophisticated adversaries who can acquire the victim’s toothprint,
for example, via the dentist.

Wide acceptability. ToothSonic provides eye-free and hands-
free authenticationwhen hands and eyes are occupied (e.g., carrying
objects or driving). It is also more socially acceptable than voice-
based authentication in public places (e.g., o�ces and libraries) as
the sonic waves of teeth gestures are much less perceptible and
unobtrusive to others.

Implicit authentication. ToothSonic can also be exploited as
an implicit authentication method when teeth gestures are used as
a hands-free computer interface, for example potentially in "Switch
Access" services, and for people with motor impairments.

2 SYSTEM DESIGN
Our system comprises four major components, as shown in Fig. 1.
The system uses energy-based event detection to locate the gestures.
Next, our system segments the recorded signals into a sequence
of gestures by utilizing the Munich Automatic Segmentation sys-
tem [3]. To enhance the SNR, we apply the harmonic ratio to �lter
our background noise when no gestures are performing.

As shown in Fig. 2, we design 10 teeth gestures including 6 sliding
gestures and 4 tapping gestures. The sliding gestures contain occlu-
sion sliding, molar sliding, canine sliding, incisor sliding front/back,
incisor sliding up/down, and incisor sliding left/right. And the tap-
ping gestures are occlusion tapping, molar tapping, canine tapping,
and incisor tapping. These gestures cover the major factors that
a�ect the sonic waves of the toothprint when performing gestures.

3 PERFORMANCE EVALUATION
Fig. 3 (a) shows the accuracy that leverages multiple gestures. In
sum, we could see that ToothSonic achieves high accuracy over
99% by combining a few gestures. In particular, our system could

(a) Multiple gestures (b) Di�erent gestures

Figure 3: Authentication accuracy.

achieve authentication accuracy of 99.81%, 99.53%, 98.95%, 96.82%
by with 6, 5, 4, 3 gestures, respectively.

Fig. 3 (b) shows the accuracy across 10 di�erent gestures when
using only one gesture for authentication. No.1 to No.6 stand for
the six di�erent sliding gestures and the left 4 gestures are tapping
gestures. We observed that the performance of the sliding gesture
is better than the tapping gestures. This is because sliding gestures
have a longer duration and contain more tooth participants with
di�erent dimensions of information. Therefore, sliding gestures
contain more features than tapping gestures, and thus could provide
more accurate authentication. We could also �nd that the accuracy
of canine gestures is the lowest. This is due to canine gestures only
involve one side canine with less information, and such gestures
are harder for users to perform in our experiments.

4 CONCLUSIONS
This paper proposed the excerpt of ToothSonic [4], a secure earable
authentication system that leverages the toothprint-induced sonic
e�ect produced by teeth gestures for user authentication. Tooth-
Sonic has several advantages over traditional biometric authentica-
tion including anti-spoo�ng, wide acceptability, and conditionally
implicit authentication. We investigate representative teeth ges-
tures that produce e�ective sonic waves carrying the information
of the toothprint. Multi-level acoustic features are also extracted
to represent intrinsic toothprint information. Our preliminary re-
sults demonstrate the e�ectiveness of ToothSonic in authenticating
earable users.
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ABSTRACT
Earables (a.k.a ear-worn wearable devices) are gaining traction in
the wearables ecosystem for monitoring user health. Human ac-
tivity recognition (HAR) is a promising use case of earables due
to their placement on the head and the combination of sensors. In
this paper, we explore using multimodal attention-based neural
networks for HAR from the ear. Attention networks have had a
large impact on other disciplines’ machine learning tasks and we
believe they present opportunities in HAR from earable data. Dif-
ferent methods of utilising attention mechanisms in the literature
are discussed as well as the bene�ts and challenges of using such
networks in the context of HAR on real systems.

1 INTRODUCTION
Earables are emerging as wearable user monitoring device [4].
These can contain multiple sensors which may be harnessed to
perform, among other things, human activity recognition (HAR) [7].
Being mounted on the head, earables can extract information about
movement of the head as well as the net movement of the body.
Like with other wearable data, deep learning shows state-of-the-
art results on earable data. This paper explores using an attention
mechanism as part of a network for HAR on earable data for their
improved performance, robustness and interpretability over other
deep learning methods.

Human activity recognition is one of the most fundamental tasks
in mobile sensing. It has applications in monitoring wellbeing and
healthcare. HAR from wearables can be regarded as a time-series
classi�cation task, a long-standing problem with applications to
healthcare and �nance. In the past, this has been performed with
traditional machine learning classi�ers [12]. Normally, Inertial Mea-
surement Unit (IMU) data is the main source of data for classi�ca-
tion, but other data streams such as heart rate and body temperature
can be used for HAR. Recently, deep learning techniques have been
used to make these classi�cations and extract features in the same
pipeline. This can incorporate multiple data streams more easily,
and thus increase the robustness of the model [11]. As a lot of the
deep learning models used for HAR previously have been inspired
by advances in vision like the Convolutional Neural Network (CNN)
or sequence modelling such as Recurrent Neural Networks (RNN),
we argue that the latest and state-of-the-art technique, attention
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mechanisms, should be employed for HAR too and that the bene�ts
of doing so outweigh the challenges.

Attention mechanisms [1] are designed to mimic human cogni-
tive attention in a computer by learning what parts of the data are
most relevant to each other and, therefore, �nding the important
features. Neural networks based on attention mechanisms have
improved performance on many tasks in deep learning [10]. The
transformer model architecture was proposed in 2017 [15] and led
to the widespread use of attention-based models. The transformer
is a sequence-to-sequence model, of which the main bene�t is that
it acts over the whole input sequence with an attention mechanism
rather than having a limited window such as previous state-of-
the-art such as RNNs. The transformer has led to successful large
language models such as the Bidirectional Encoder Representations
from Transformer model (BERT) [2] and its many derivatives. Be-
sides its use in natural language processing, the transformer and
attention mechanisms have led to the development of the vision
transformer [3], which achieves state-of-the-art performance on
computer vision tasks.

2 ATTENTION NETWORKS: A PRIMER
An attention network contains at least one layer that has learned
parameters for the relevance of di�erent inputs relative to the other
inputs at each position. This relevance is calculated with a series of
matrix multiplications for a query given certain keys and values. For
sequence modelling, for example in translation, the input sequence
is turned into a series of tokens with a positional embedding as the
attention layer inputs. Transformers are an example of a successful
purely attention-based network.

3 OPPORTUNITIES OF ATTENTION ON HAR
Opportunity 1: Performance, robustness and versatile designs
of attention layers. Using attention networks for HAR from ear-
able data gives improved performance as well as the robustness
of using multimodal data such as IMU, audio, PPG and other sen-
sors. An example is the combination of attention and convolution
exploited for multimodal timeseries by Tripath et al. [14], which
outperforms other deep learning methods on HAR datasets. Addi-
tionally, a promising method that resolves where to focus and what
to focus on was proposed by Gao et al. [5]. They use both temporal
and cross-channel attention layers in a Dual Attention network.
This network was speci�cally developed for HAR tasks and shows
an increased performance over other deep learning methods on
HAR datasets. This combination of di�erent attention mechanisms
allows the network to outperform other attention-based networks
while remaining end-to-end trainable, unlike some other networks.

Opportunity 2: Multitask generalisation. Another way to
exploit the attention mechanism is with its generalisability. These
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networks can be used to perform multiple tasks on the same data
streams. This is particularly relevant to HAR where we may desire
information such as gait and posture. Liu et al. developed a multi-
task attention-based model that can run on-device [9] showing the
possibility for this model to generalise and still be lightweight.

Opportunity 3: Visualising the attention. The interpretability
of the model is also a bene�t of attention networks, since it involves
visualising the attention weights [13]. This has particular impor-
tance when applied to healthcare where HAR can be used. Gao et
al. also discuss visualisation of channel importance by looking at
attention weights [5]. This has applications in reducing the model
complexity by not including data streams or features deemed to be
less relevant, this could be important to running a model on-device
in real-time.

4 CHALLENGES
In the previous section, we discussed the opportunities presented
by applying attention networks to earable-based HAR. However, to
achieve those, there are a number of challenges researchers have to
face to implement these networks onto real systems. This section
will re�ect on these.

Challenge 1: Keeping the model lightweight.While develop-
ing the model, the end use case of running on a mobile device must
be kept in mind. This means keeping the model lightweight enough
for the target device. Attention models can have higher parameter
counts than other deep learning models [16] so an increase in per-
formance must be weighed against a loss in on-device inference
time. Liu et al. [9] use a model with temporal shift attention and
convolution layers that runs on-device using more e�cient con-
volutions. Established techniques for reducing model size such as
quantisation and pruning [8] are important for keeping the model
lightweight. Additionally, hardware designed for edge on-device
inference is being developed, bringing increased performance in
mobile deep learning [17].

Challenge 2: "Data Hungry" models. Attention-based mod-
els can be described as “data hungry” and require larger datasets
to train compared to other deep learning models [6]. This could
reduce the performance of HAR from earables compared to mod-
els that are conventionally employed if su�ciently large datasets
are not available. One solution to this problem could be to use
larger datasets from other wearable devices and implement transfer
learning, where a model trained on a larger dataset can learn the
characteristics of the sensor data and then be retrained on a smaller,
earable and task-speci�c dataset.

Challenge 3: Adapting techniques from other ML domains
and lack of established frameworks. Implementing transform-
ers and attention layers for domains such as natural language and
vision is aided by well-developed frameworks. But for timeseries
applications, these frameworks are in their infancy, which can make
developing and experimenting with models time consuming. How-
ever, there are emerging frameworks, since this is an active area of
research and timeseries tasks are well supported for other networks
such as CNNs and RNNs. These can be adapted for attention layers.

5 OUTLOOK
Attention networks and transformers have revolutionised natural
language and vision �elds giving state-of-the-art performance. We

have argued the opportunities presented by attention networks
for HAR outweigh the challenges of implementing the models on
real systems. Researchers will need to focus on keeping the models
lightweight enough for mobile devices, the datasets used, as well
as schemes to adapt techniques from other ML domains.
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Figure 1: Architecture of A������ [1]. The �rst two modules take care of collecting and labeling high resolution earable data
interactively. The development and generation modules allow model and �lter optimization through automated hardware-in-
the-loop Bayesian neural architecture search and optimization, respectively.

ABSTRACT
A������ is an extendable and open-source optimization toolkit
designed to enhance and replicate earable applications. A������
serves two primary functions. Firstly, A������ handles data col-
lection, pre-processing, and labeling tasks for creating customized
earable datasets using graphical tools. The system includes an open-
source dataset with 2.43 million inertial samples related to head
and full-body movements, consisting of 34 head poses and 9 ac-
tivities from 45 volunteers. Secondly, A������ provides a tightly-
integrated hardware-in-the-loop (HIL) optimizer and TinyML inter-
face to develop lightweight and real-time machine-learning (ML)
models for activity detection and �lters for head-pose tracking.
A������ recognizes activities with 91% leave 1-out test accuracy
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(98% test accuracy) using real-time models as small as 6-13 kB.
Our models are 98-740⇥ smaller and 3-6% more accurate over the
state-of-the-art. We also estimate head pose with absolute errors
as low as 5 degrees using 20kB �lters, achieving up to 1.6⇥ preci-
sion improvement over existing techniques. A������ is available
at https://github.com/nesl/auritus.
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Figure 2: (Left) Accuracy vs. model size of A������ models (black) vs. state-of-the-art models (red). (Middle) Error of A������
�lters vs. proposed earable head-pose �lters. (Right) Our NAS adapts the same model to exploit full device capabilities.

A������: An Open-Source Optimization Toolkit for Training and Devel-
opment of Human Movement Models and Filters Using Earables. In Pro-
ceedings of the 2022 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp/ISWC ’22 Adjunct), September 11–15, 2022,
Cambridge, United Kingdom. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3544793.3563423

1 INTRODUCTION
The bulk of emerging innovations in earables builds upon ML ad-
vances for wearable activity detection. However, the data-hungry
nature ofML training demands access to large-scale earable datasets,
which are hard to come by. Moreover, given the tight memory,
power, and compute constraints of earables (e.g., 56 kB SRAM, 16
MB �ash), deploying on-device AI-driven activity detection and
head-pose estimation is challenging.A������ addresses the scarcity
of earable datasets and software tools by providing:

• An open-source earable dataset from 45 volunteers contain-
ing 34 distinct head-poses and 9 classes of full-body activities
with 2.43 million samples.

• Tools to enable data collection, processing and labeling.
• A zoo of 5 lightweight models, 5 conventional models, and 4
headpose �lters that signi�cantly outperform the state-of-
the-art in terms of accuracy and resource usage.

• A HIL Bayesian neural architecture search (NAS) framework
for training and deploying said models and �lters on earables.

2 DATA COLLECTION AND LABELLING
For data logging, we used the eSense earable device from Nokia
Bell Labs. The 6-channel inertial data was broadcasted at ⇠100 Hz
to an in-house smartphone application we developed using eSense
Android middleware backend. For sub-mm resolution ground truth
collection, the participants wore a hat with OptiTrack Prime 17W
MoCap infrared markers. The motion data of the head and the
marker visual cues were tracked using Motive:Tracker and screen
recorder applications, respectively. For the head-pose dataset, we
collected 34 distinct head-poses from 27 targets per participant,
totalling 45 participants. For the activity dataset, 9 classes of ac-
tions were recorded, namely walking, jogging, jumping, standing,
turning left, turning right, sitting, lying, and falling. A total 6.75
hours of human movement data is available. To ease labeling the

data collected in continuous chunks, we designed a graphical-user-
interface to allow head-pose and activity data annotation via plots.
The application developer selects points directly on a plot signifying
the start and endpoints of regions of interests. After specifying all
the endpoints and making any numerical adjustments to the data,
the developer runs a script to perform automatic segmentation and
labeling based on the endpoints.

3 MODEL AND FILTER DEVELOPMENT
To enable real-time activity classi�cation on resource-constrained
devices, we included several lightweight classi�ers and �lters suit-
able for onboard activity inference in the model and �lter zoo. The
models include temporal convolutional network, fast gated RNN,
fast RNN, Bonsai and ProtoNN. The �lters include complemen-
tary �lter, Madgwick �lter, Mahony �lter and indirect extended
Kalman �lter. To �nd the ideal activity detection model candidate
from the model search space for limited �ash, RAM, and latency
requirements, or to optimize �lter parameters, we included a HIL
Bayesian optimizer. The goal is to �nd a model/�lter that maxi-
mizes the hardware SRAM and �ash usage within the device capa-
bilities while minimizing latency and error on the validation set.
Our optimizer communicates with the target hardware during the
optimization process to guarantee deployability and architectural
adaptation based on resource constraints. We use Gaussian process
as the surrogate model and gradient-free Monte Carlo sampling
with Upper-Con�dence Bounds as the acquisition function.

4 KEY RESULTS
A������ generates models that are 98-740⇥ smaller, yet 3-6% more
accurate over the state-of-the-art. Our models are as small as 6-13kB
with 91-98% accuracy, and our fall detection models are as small as
2kB with 98% accuracy. Our �lters have ⇠5 degrees of error with 20
kB of code, providing 1.6× improvement over the state-of-the-art.
Our NAS framework performs intelligent architectural adaptation
and device capability exploitation based on resource availability.
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ABSTRACT
By adding sensing capabilities to ear-worn devices, earables have
emerged as a new platform. The ears are located closely to a number
of important anatomical structures (e.g., brain, blood vessels). Also,
the ear canal deforms upon facial movements and the ears can be
comfortably touched by the hands. In a recent paper, we conducted
a systematic literature review of 271 earable papers. We synthesized
an open-ended taxonomy of 47 phenomena that can be sensed in, on,
or around the ear. We identi�ed 13 fundamental phenomena from
which all other phenomena can be derived, and discuss sensing
principles to detect them. The phenomena were reviewed in-depth
in four main areas: (i) physiological monitoring and health, (ii)
movement and activity, (iii) interaction, and (iv) authentication and
identi�cation. This breadth highlights the potential earables have
to o�er as a ubiquitous, general-purpose platform.
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1 INTRODUCTION
Earables are wearable that are worn in or near the ears. Hearing
aids and personal speakers are examples of ear-worn electronics
that have emerged for speci�c uses. As a new class of ubiquitous
computing platform, we de�ne "earables" as devices that integrate
broader features. Due to their distinctive placement on the human
body, earables (also known as "hearables") o�er a unique platform
for sensing a variety of properties, processes, and activities. At the
heart of much of the research in this new �eld are questions of
sensing - what can be detected and observed with earables, and
what interactions and applications are enabled by sensing in or on
the ear?

In a recent paper, we conducted a systematic and comprehensive
literature review of 271 earable publications, representing the state
of the art in earable sensing. This excerpt gives a brief introduction
to article No. 135 published in Volume 6, Issue 3 in the Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies [1].

2 METHODOLOGY
Inspired by related reviews, we followed a structured process by
collecting and �ltering papers from the ACM and IEEE digital li-
braries using a number of de�ned selection criteria (e.g., sensing
has to occur on or around the ears). This was supplemented with
backward chaining using the same criteria applied to papers from
other digital libraries (e.g., Springer). We used the following guid-
ing de�nition of earables: “Earables are devices that attach in, on,
or in the immediate vicinity of the ear to o�er functionalities be-
yond basic audio in- and output.” The described process resulted
in 271 relevant articles which we analysed and clustered, and from
which we derived a novel earable taxonomy consisting of di�erent
phenomena.
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Figure 1: Overview map of earable sensing. The map is organised by phenomena that can be captured with earable sensors.

3 CONTRIBUTION
Each paper in the dataset was categorized with respect to the ap-
plied sensing principle, the corresponding phenomena which was
sensed, and the application for which it was used. Through mul-
tiple iterations, we then synthesized a higher-level taxonomy of
phenomena sensed with earables that is open-ended and extensible
(new sensors might emerge, and further phenomena explored).

At the lowest level, we then identi�ed and characterised phe-
nomena that are directly sensed with sensors placed in or on the
ear as fundamental phenomena, including for instance motion, body
temperature and blood perfusion. Other phenomena are identi�ed
as indirectly observable and derived from fundamental phenomena,
ranging from physiological parameters (e.g., heart rate) and lower-
level cues (e.g., earable state; in or out of ear) to conditions (e.g.,
stress), actions (e.g. gestures), activities (e.g. daily tasks) and other
context (e.g. user identity). In total, we identi�ed and categorised
close to 50 phenomena. We showed how higher-level phenomena
build on 13 fundamental phenomena, and relate this to 21 di�erent
sensors and sensing principles that have been investigated for their
observation.

Figure 1 provides a simpli�ed map of these phenomena, clustered
into related themes and grouped into four main areas of research:
(1) physiological parameters and health; (2) movement and activity;
(3) interaction; and (4) authentication and identi�cation. For each
of these research areas, we provide an extensive overview of the
research conducted in the space.

Further sensing developments will likely expand the already rich
set of phenomena sensed by earables, and new applications will
emerge that leverage those currently available. However, to-date
most earable sensing research has not been rigorously tested in-
the-wild. Future work will have to demonstrate ecological validity
and overcome robustness and engineering challenges to unleash
the full potential that earables have to o�er as a ubiquitous, general-
purpose platform.
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ABSTRACT
Electroencephalography (EEG) allows the study of the brain in
humans with applications in areas of Psychology, Brain-Computer
Interfaces, and Neuromarketing. The conventional systems limit
the applications of EEG to lab environments, but recent develop-
ments towards portable EEG have allowed brain studies outside the
laboratory in more realistic situations. One such direction is the Ear
EEG, a wearable concept for recording the EEG using an ear worn
device. This paper discusses a system design to study the Ear EEG
compared to the scalp EEG using the OpenBCI. We evaluate the
signal quality obtained with Ear EEG using a customized earpiece
and demonstrate the feasibility of recording alpha attenuation using
Ear EEG.
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1 INTRODUCTION
There exist several brain imaging modalities, such as Electroen-
cephalography (EEG), Magnetoencephalography (MEG), Functional
near-infrared spectroscopy (fNIRS), and functional Magnetic reso-
nance imaging (fMRI), used to understand the anatomy and function
of the brain for monitoring and diagnostic purposes. These modal-
ities have their advantages and disadvantages in terms of spatial
and temporal resolution, portability, and cost, and most are not
well-suited for mobile and lifestyle integration. EEG is widely used
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Figure 1: (A) Custom designed ear mould with electrodes
placed and (B) A subject wearing the ear mould

to investigate the brain in applications such as neurophysiology,
brain-computer interfaces, and neuromarketing.

EEG is a non-invasive recording of the brain’s electrical activity,
typically by placing electrodes on the scalp’s surface. The EEG on
the scalp estimates synaptic action at large scales closely related to
behavior and cognition. Thus, EEG can provide a genuine window
on the mind [10]. The clinical systems to record EEG require a
conductive gel applied to the electrode sites. The use of conductive
gels causes discomfort to the subjects and limits the recording time
as the signal quality degrades with the drying of the gels. Although
EEG analysis has advanced in academic and professional contexts,
the complexity of clinical EEG systems and the requirement of
specially trained personnel have made them unsuitable for mobile
and lifestyle integration.

Researchers in recent years are working towards developing
portable EEG technologies, o�ering a wireless, compact, and hassle-
free EEG system to enable monitoring of the brain to understand
the neural correlates of behavior, mental processes, and sleep. [12].
Wearable EEG is a technology that enables the translation of neu-
roscience from the laboratory to the real-life environment. The Ear
EEG is a wearable concept of recording the EEG in the ear intro-
duced by Looney et al. [8] demonstrating the feasibility of recording
the ear EEG. The Ear EEG has shown to produce signal-to-noise
ratios comparable to those from conventional EEG electrode place-
ments and is robust to familiar sources of artifacts. The studies have
been conducted on ear EEG to check its e�ectiveness in recording
auditory and visual evoked potentials[7].

In this paper, we have presented the early results of the feasi-
bility of Ear EEG and the methodology to build a rigorous and
comprehensive system using OpenBCI to study a larger population
of subjects and to span several protocols, and in this way, assess
the use cases of Ear EEG compared to scalp EEG.

https://doi.org/10.1145/3544793.3563417
https://doi.org/10.1145/3544793.3563417
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Figure 2: Electrode Con�guration on Scalp and Ear. (A) Elec-
trode placement on the scalp according to the 10-20 system.
The reference electrode is placed on the left earlobe, and the
ground electrode is placed on the right earlobe (B) Sketch
of the exterior part of the left ear, showing the four regions
corresponding to the electrode labels A through D. (C) Cross-
sectional view of the left ear canal (sagittal plane) showing
the electrode labels in the left ear canal. The electrodes are
labeled based on the direction relative to the vertical axis
and not based on the depth in the ear canal

2 SYSTEM DESIGN
2.1 Earpiece
This section discusses the design of customized earpieces. The
earpieces were developed according to the anatomical shape of
the subjects. An audiologist captured the impression of the ear by
cleaning the ear and inserting a cotton ball with a thread inside
the ear canal. Then, silicone was �lled into the ear canal and the
concha region. The impression was then carefully removed once the
silicone had dried. The ear impression was then used to create a 3D
ear mould. Then electrodes were placed according to the positions
described in Figure 2. Various electrode materials were simulated
[2], and gold-plated electrodes were selected. Gold-plated surface
mount PCB contact was used as ear-EEG electrodes. The electrode
had a diameter of 3mm and was 1.9mm thick. Figure 1 shows the
earpiece design with electrodes mounted and a subject wearing the
earpiece.

2.2 Electrode Con�guration
Scalp. The ScalpEEG consisted of 16 electrodes according to the
international 10-20 system and were FP1, FP2, F3, F4, F7, F8, C3,
C4, T7, T8, P3, P4, P7, P8, O1, O2. The scalp electrode positions are
shown in Figure 2A. Dry Comb electrodes were used for scalpEEG.

Ear. The EarEEG consisted of eight electrodes in each ear, with
four electrodes placed in the ear canal and concha. The electrodes
labeling convention follows [6]. The electrodes are labeled Exy,
where x denotes the left(L) or right(R) ear, and y denotes the position
in the ear. Positions A through D covers the concha region at four
di�erent locations. Positions F, H, J, and L, denote the ear canal
electrodes. Figure 2B and 2C depicts the positions of the electrodes
in the ear concha and canal.

2.3 Hardware
The OpenBCI Cyton-Daisy Biosensing Boards were used for record-
ing EEG. The OpenBCI system is a low-cost open-source EEG am-
pli�er with a proven record as an alternative to medical-grade EEG

ampli�ers [4] [11]. The OpenBCI Cyton is an eight-channel system
with a sampling rate of 250Hz over Bluetooth, while 16 channels
can be used with the add-on Daisy Board at a reduced sampling
rate of 125Hz. The system uses the ADS1299, a 24-bit biopotential
measurement integrated circuit developed by Texas Instruments. A
PIC32-based microcontroller is implemented on the board, provid-
ing plenty of local memory and fast processing speeds. In addition,
A 3-axis accelerometer (LIS3DH). A module for storing data in a
micro SD card. The application to communicate with OpenBCI
is an open-source application written with Processing language.
The ampli�er supports both wet and dry electrode con�gurations
and has support for external sensors, and was chosen given the
capability for customizing the recording con�gurations. There also
exists a few issues with the OpenBCI, the main concerns being
low sampling rate and high sensitivity of electrical noise to resolve
which additional hardware is required.

3 METHODOLOGY
3.1 Experiment Design
Protocols. Five di�erent protocols and the alpha attenuation task
were chosen as stimuli for the subjects. The motivation for choosing
these stimuli was to activate the �ve broad lobes and to study their
in�uence on Ear EEG

Alpha Attenuation Task The subjects were instructed alternately
to rest with open and closed eyes for 1 minute each. Auditory cues
were presented at one-minute intervals, instructing the subjects to
alternate between performing eyes-open and relaxing with eyes
closed. This activity of opening and closing eyes is known to atten-
uate the alpha band (8-13Hz) in EEG.

Four Word Sentence Task The processing of words and sentences
and memory tasks have been associated with the parietal lobe. The
subject is presented with a set of four-letter words, following which
the subject is to generate a meaningful sentence with words starting
from each letter of the word [1].

Go-No-Go Task The role of the frontal cortex in response inhi-
bition. The frontal cortex has been reported to be active during
the infrequent stimulus. The Go/No-go task is an experimental
protocol used to determine the response inhibition of the subject.
The subject must respond by pressing a button when they see a “go”
condition and not respond when they see the “no-go” condition.

Steady State Visual Evoked Potential (SSVEP) The human visual
cortex can perceive light modulation to frequencies up to 75Hz,
which is reported to be most sensitive around 10Hz. The SSVEP is
typically induced by �ashing light through a monitor or using a
light source such as LED [7].

Motor Task Motor task can be de�ned as the subject’s mental
process of motor activity with actual motor movement. It is a well-
reported fact that motor movement causes event-related synchro-
nization (ERS) or event-related desynchronization (ERD) in the
central mu (8-12Hz) and beta (13 - 35Hz) bands [9].

Auditory Steady State Response (ASSR) Auditory steady-state
responses (ASSR) were reported as a method to assess the hearing
threshold level objectively. Amplitude-modulated narrow or broad-
band sound signals can evoke the ASSRs. The neural encoding of
the modulating frequency is visible in the frequency spectrum of
the EEG [7].
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Figure 3: A) The block diagram of the recording setup, B)
A subject in the recording setup wearing the scalp and ear
electrodes

Kiosk. The protocols have been deployed on a kiosk developed in-
house[5]. The kiosk has been developed predominantly in the Java
platform and extensively tested on Microsoft Windows. Custom
libraries were written to handle the stimulus drawing, hardware
interfacing, data handling, etc. The kiosk is a subject-friendly tool
and does not need the experimenter’s intervention during the task
to give the subject’s privacy during the experiments.

3.2 Data Acquisition
The data was collected from 6 subjects after informed consent. For
this study only the alpha attenuation paradigm is considered. The
EEG recording was done using two OpenBCI Cyton-Daisy ampli�er
systems, each for the scalp and ear. The raw data was recorded using
the OpenBCI GUI at a sampling rate of 125Hz. The electrode sites
were cleaned using Isopropyl alcohol prior to electrode placement.
The Ultracortex Mark iv headset was used to place the scalp elec-
trodes and earpieces for the ear electrodes. The ground electrode
of both the scalp and ear was placed on the right earlobe and the
reference electrode on the left earlobe. Figure 3A shows the block
diagram, and Figure 3B shows a subject in the recording setup.

Data Validation To validate the correctness of the EEG collected
few checks were done visually on the OpenBCI GUI. Each channel
data was visually inspected to check the signal by instructing the
participants to blink their eyes and clench their jaws. Impedance
was measured, and made sure low impedance was maintained for
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Figure 4: A) Average PSD results of the the scalp and ear elec-
trodes for a Subject for the Baseline recordings, B) Average
spectral coherence between the scalp and ear electrodes

good EEG signals. The railed information in the OpenBCI GUI was
checked, and made sure that all channels were not railed.

Data Synchronization The data synchronization was at two levels
i) to synchronize the scalp and ear EEG and ii) to synchronize the
stimulus with EEG data. An Arduino-based system was developed
to synchronize the OpenBCI systems with the stimulus. The kiosk
communicated with the Arduino over serial communication, and
the Arduino responded to these messages by toggling the digital
output pin. The same digital pin output was fed to the OpenBCI sys-
tems through optical isolators, thus synchronizing the datastreams
of the EEG with the stimulus. The event markers were recorded on
the OpenBCI using the digital I/O pins in the AnalogRead mode.

3.3 Data Processing
The �rst step of the data processing was the synchronization of
the scalp and ear datasets. The auxiliary analog channel recorded
on the two OpenBCIs was used to calculate the event markers and
these event markers was then used to align the data streams. Few
datasets were excluded from analysis due to noisy recordings. The
data preprocessing steps for scalp and ear EEG remained the same.

The data processing was done using EEGLAB, and the steps
are as follows. The data was cropped to reject the �rst and last
10 seconds of data. The data was then highpass �ltered to 1Hz.
Additionally, the zapline toolkit[3] was used to remove the �rst and
second harmonics of the line frequency (50Hz). Post �ltering, man-
ual inspection of the data was done to annotate bad data segments,
and the bad segments were rejected. Bad channels were detected
using the OpenBCI railed/not railed logic, and the channels were
also rejected based on visual inspection.

4 EXPERIMENTAL RESULTS
�ality of Ear EEG. The quality of the Ear EEG was veri�ed by
comparing the power spectral density of the ear and scalp EEG. The
power spectral density was computed with the multitaper method
using a single taper. Figure 4A shows the average power spectral
density of a subject’s ear and scalp EEG. It was observed that the
ear EEG showcased less power compared to the scalp. Spectral
coherence was computed to determine the similarity between the
scalp and ear EEG across frequencies. The spectral coherence ranges
from 0-1, with values close to 1 depicting higher coherence at those
frequencies. The spectral coherence between the scalp and ear EEG
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Figure 5: A comparision between eyes open (EO) and eyes
close (EC) condition during baseline recordings in A) scalp
electrode (O1) and B) ear electrode (ERL)

��

����

��

����

�

���

�

���

�

���

�

3R
Z
HU
��G

%
�

(2 (&

2�

(5/

Figure 6: Bar plots depicting the change in total alpha power
between eyes open (EO) and eyes close (EC) conditions in
scalp electrode (O1) and ear electrode (ERL)

was the maximum around the alpha band, with averages around
0.2. Figure 4B shows the average spectral coherence between the
scalp and ear electrodes.

Alpha A�enuation. The data was segmented based on the eyes open
and eyes closed markers. The power spectral density was computed,
and the absolute power in the alpha bandwas computed. The results
of alpha attenuation for a typical subject (SUB003) are discussed
here. Figure 5A for the scalp and Figure 5B for the ear shows the
PSD plots for the respective EEG during the Eyes Open (EO) and the
Eyes Close (EC) conditions. The mean alpha power of the Ear EEG
was found to be lesser by half compared to scalp EEG. The change
in power in alpha attenuation was computed as the ratio of absolute
power in the alpha band during EC and EO. The Table1 tabulates
the change in alpha power shown in Figure 6. The alpha power
in the scalp EEG showed a change of 152%, whereas the Ear EEG
showed a change of 57% between the EO and the EC conditions.

5 CONCLUSION AND DISCUSSIONS
In this paper, we discussed the system design to study Ear EEG. The
methodology to design earpieces and interface them with OpenBCI
was described. The scalp and ear EEGwere recorded simultaneously

EEG Location Scalp Ear
Average Eyes Open alpha power (dB) 1.73 -1.27
Average Eyes Close alpha power (dB) 2.64 -0.73
Change in alpha power 1.52 0.57

Table 1: Alpha power in Scalp and Ear EEG for a subject

with common reference and ground. The subjects performed the
alpha attenuation task of EO and EC.

It was observed that Ear EEG is e�ectively identical to similarly
referenced conventional scalp EEG. The Ear EEG measurements
had lower power in comparison with scalp EEG. The alpha activity
during Eyes Open and Eyes Close in Ear EEGwas found to have less
discrimination but was completely acceptable. This demonstrates
that the bio-potential acquired by the Ear EEG platform is similar
to that of conventional scalp electrodes.

This motivates us to study the e�ect and correlation of the en-
dogenous and exogenous cortical potentials generated in the di�er-
ent lobes due to various protocols, frequency bands, and frequency
response characterization on the Ear EEG. Establishing reliable Ear
EEGmay lead the research toward sleep studies and brain-computer
interfaces, which demands stable electrode performance, comfort,
and scalable form factor. The aim is to develop an Ear EEG wearable
with comfort levels comparable to the modern-day state-of-the-art
wireless earbuds.
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ABSTRACT 
Earables provide a new opportunity to study conversation in the 
wild. They uniquely allow (i) accurate head motion tracking 
recorded synchronously with the speech signal and (ii) multiple 
people to simultaneously receive and stream conversational 
speech that is unconstrained by body movement. Here, our 
general aim is to introduce the use of earables for conducting 
psycholinguistic studies requiring audio and movement data 
jointly collected during verbal interaction in a natural setting. 
Specifically, we propose using earables platforms to address the 
relationship between head movement, speech and meaning 
transmission from single and multiple-person perspectives. 
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1 Procedure 
We will collect accelerations, rotational velocities and audio 

signals with the eSense platform [1, 2] to measure head 
movements and turn-taking length during structured 
conversations. Data will be recorded while two participants play 
the board game “Taboo”. This way, we can obtain concurrent 
linguistic measurements, along with a quantitative indicator of the 
success of an interaction, like the number of words correctly 
guessed, the number of errors and the number of conversational 
turns or the amount of time required to generate these guesses. 
Moreover, the task allows a similarly structured conversation 
across multiple participant dyads and the ludic aspect of the 
activity act as a prompt to facilitate the interaction. Potentially, 
we can include several groups, each of them using a different 
language. Lab Streaming Layer (LSL) software will synchronise 
the recordings across multiple participants. The relationship 

between signals will be measured (in bites) by computing the 
mutual information (MI) between time series (e.g., Gaussian 
Copula MI). Speech signals will be automatically transcribed to 
text (e.g., Google Cloud Speech-to-Text API), including speaker 
diarisation and words’ time stamps to measure the turn-taking 
length. The entropy/predictability for each word and speaker 
intervention will be obtained by applying natural language 
processing (NLP) techniques (e.g., GPT-3 model). 

1.1  Studying the relationship between 
head movements and speech 

Head movements and verbal communication are interwoven; 
an inherent kinematic component is associated with speech 
production. Furthermore, by moving the head, we can transmit 
information (e.g., nods of agreement for approval). Tongue and 
mandibular movements provide visual cues that facilitate 
comprehension and interlocutor engagement [3]. These 
movements strongly track with the speech envelope. In turn, 
speech envelope information is essential for language 
comprehension and is closely tracked by listeners’ brain 
responses to achieve speech intelligibility [4]. 

Earables offer considerable potential for quantitatively 
exploring head movement’s communicative and linguistic 
function [5]. Here we will measure the mutual relationships 
between speech envelope and head motion. In recent work testing 
the motion tracking in the eSense platform, Ferlini et al. [6] 
describe that “speaking generates unwanted vibrations and micro-
movements that are captured by the sensors”. We hypothesise that 
these micro-movements captured by earables are associated with 
the speech envelope. Thus, speakers’ (and listeners’) head motion 
tracking of speech envelope will be measured. To test for a 
significance requirement of 95%, 1000 surrogates will be created 
for each participant. These surrogates will be obtained by 
perturbing the speech envelopes while preserving autocorrelation. 
The perturbed speech envelopes will be paired with intact head 
motion data, and the GCMI calculated. Then, we will compare if 
the group mean GCMI value is larger than the maximum null 
mean GCMI. In summary, we will identify whether the speech 
envelope provides information regarding head motion. If it is true 
that head micro-movements detected by the earables are 
correlated to the speech envelope, they could be removed from 
the motion signal and used as a backchannel to increase speech 
engagement in the listeners of the produced speech. 



	 	

	

1.2  Studying interpersonal coordination 
during a conversation 

Interpersonal non-verbal synchronization and smooth 
conversational turn-taking (i.e., with short gaps) have both been 
associated with successful face-to-face verbal interactions [7]. 
We propose to explore this association further using earables. 
Specifically, we will test whether head movement signals from 
two or more interlocutors can be used to measure the moment-by-
moment degree of interpersonal synchronization. Moreover, we 
will test whether interpersonal synchronization correlates with the 
magnitude of the turn-taking lag. Finally, we will use these 
measurements to predict the “successfulness” of verbal exchange. 

To test the validity of using earables motion signals to capture 
interpersonal synchronization, we will compare the two-person 
head motion mutual dependence against surrogate data created by 
re-pairing members of different, non-interacting dyads. Using the 
same measure, we will also evaluate the performance of the 
automatic classification of pairs of participants engaged in an 
interactive conversation as distinct from the randomly paired 
participants. Then, we will correlate these common head 
movement patterns with the gap length preceding the switch 
between listening and speaking. Finally, measures of the two 
heads' movement relationship and the length between 
conversational turns will be used to predict measures quantifying 
the efficacy of the verbal information exchange during the 
conversation. In summary, we will quantify the relationship 
between interpersonal coordination and the success of meaning 
transmission between conversational partners. 

2 Applications and Significance 
Conversational turn-taking is a critical type of coordination 

necessary for conversation. At any moment, there is a speaker and 
a listener, whose roles alternate to produce the two-way meaning 
transmission that characterizes a dialogue. We sense when to 
jump into the conversation, aided by grammatical cues, intonation 
and the ‘backchannel’ responses provided by head movements. 
For example, head movements can emphasize chunks of speech 
that are supposed to be uninterrupted [8]. However, there are 
situations where interlocutors have limited or no concurrent 
visual information. This can be the case with online interactions 
like avatar chats, in-game dialogues and telephone conversations. 
Through earables, we can synthesize spontaneous head 
movements to be delivered as a surrogate backchannel signal 
(e.g., vibrations) to help coordinate interlocutors’ timing, 
supporting better conversational outcomes.  

From head movement signals, we can determine which 
interpersonal interactions are most important for a given 
individual. This information can reveal which signals to prioritize 
in a multi-person situation to guide a directional hearing aid. 
Although there are other vision-based methods that are more 
reliable for head motion monitoring, earables are discrete and 
socially accepted, and allow real-life conversational recordings 
minimally supervised. We might also devise systems for 
providing feedback or training to individuals that struggle in 
everyday social situations, for example, by detecting poor timing 
in their conversational interventions or head movements that are 
at odds with prevailing cultural norms. Such systems might, in 

time, prove valuable for facilitating communication and 
enhancing speech comprehension. 

We anticipate that measurements obtained from earables can 
reveal important cues to the status and quality of ongoing vocal 
communication. By combining interpersonal synchronization, 
turn-taking and speech predictability structure from NLP models, 
we will be able to tag and online monitor the nature of the 
interaction (e.g., socializing vs arguing) and the degree of 
bonding (empathy) between interlocutors.  

In a nutshell, earables platforms enable the low-cost, 
unobtrusive monitoring of multiple people during prolonged 
naturalistic interaction. Altogether, allow researchers to conduct 
real-life experiments on interpersonal verbal communication. 
Here we emphasize that earables facilitate investigating how 
participants coordinate during verbal interaction. 
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ABSTRACT
Earables are ear-worn devices that o!er functionalities beyond
basic audio in- and output. In this paper we present the ongoing de-
velopment of a new, open-source, Arduino-based earable platform
called OpenEarable. It is based on standard components, is easy to
manufacture and costs roughly $40 per device at batch size ten. We
present the "rst version of the device which is equipped with a se-
ries of sensors and actuators: a 3-axis accelerometer and gyroscope,
an ear canal pressure and temperature sensor, an inward facing
ultrasonic microphone as well as a speaker, a push button, and a
controllable LED. We demonstrate the versatility of the prototyping
platform through three di!erent example application scenarios. In
sum, OpenEarable o!ers a general-purpose, open sensing platform
for earable research and development.
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• Hardware → Emerging technologies; • Human-centered
computing → Ubiquitous and mobile computing systems
and tools; Ubiquitous and mobile devices;
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1 INTRODUCTION
Earables are de"ned as “devices that attach in, on, or in the im-
mediate vicinity of the ear to o!er functionalities beyond basic
audio in- and output.” [6]. A broad spectrum of sensors have been
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used on the earable platform, ranging from motion, audio, and
optical to biopotential, environmental, and electrical sensing prin-
ciples. These have been used to detect a multitude of interesting
phenomena that have been used in applications spanning several
research areas including health monitoring, activity classi"cation,
interaction, and authentication and identi"cation [6]. As a result,
the earable platform has attracted attention from several, di!erent
research communities, and the number of research publications
using the platform is increasing year-on-year.

A wide variety of hardware prototypes have been used in the
earable research literature, ranging from commercial o!erings such
as Apple Air Pods1 and cosinuss2, prototype research platforms
such as eSense developed by Nokia Bell Labs [5], and fully bespoke
earable research devices (e.g., [3]). Of particular note is the eSense,
which has accelerated the growth of earable research within the
academic community. This in part was driven by the devices being
freely distributed to academics across the world, providing a plat-
form for which earable research can place and which others can
openly contribute to. More recently, Chatterjee et al. [4] introduced
ClearBuds, which has open hardware and comes equipped with dual
microphones that can be used for speaker separation using beam-
forming. However, these earable platforms lack the extensibility
that is required to take full advantage of the wide range of sensors
that have been shown to be e!ective on the earable platform.

We introduce OpenEarable, the "rst fully open-source, Arduino-
based earable research platform. OpenEarable aims to build upon
the success of other earable prototyping platforms by providing
a fully transparent and open hardware platform that enables re-
searchers to push the boundaries of earable research. The main
objective of OpenEarable is to provide an extensible platform that
can be easily and cost-e!ectively manufactured for research and
development purposes. In this paper, we present the "rst version of
OpenEarable which features a 3-axis accelerometer and gyroscope,
an ear canal pressure and temperature sensor, as well as an inward
facing ultrasonic microphone and speaker. We provide an overview
of the design process and an in-depth walkthrough of the hard-
ware and software systems that make up the OpenEarable platform.
Based on three exemplar applications from the research literature
we highlight how the platform has to the potential to be used for
motion-based activity tracking, detection of chewing events, and
ear canal shape based authentication.

1AirPods Pro - https://www.apple.com/airpods-pro/
2cosinuss - https://www.cosinuss.com/en/technology/
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Figure 1: System overview of the OpenEarable system architecture. The microcontroller unit is the central hub which commu-
nicates with sensors, actuators, and external devices.

2 DESIGN PROCESS
In the following, we describe our guiding design principles and
rationalise the sensor selection for the "rst version of OpenEarable.

2.1 Guiding Principles
Our main objective when developing the OpenEarable platform
was to provide a general-purpose hardware sensing platform for
the earable research community that allows for the exploration of
state-of-the-art sensing capabilities on the ear. We were guided by
the following principles throughout the design and development
process:

2.1.1 Openness and Extensibility. TheOpenEarable platform’s hard-
ware and software should be open to, and easily extensible by,
others. The OpenEarable platform should provide the core infras-
tructure to enable the exploration of di!erent sensing paradigms.
As a result, all hardware design "les, "rmware, communication
interfaces, and data recording tools should be made public and
easily accessible so that others can modify and expand the plat-
form in unique and novel ways. We also made a conscious e!ort to
use development tools that are free-of-charge in the design of the
hardware and software. We believe that as many people as possible
should be provided with the opportunity to develop on, and for, the
OpenEarable platform.

2.1.2 Manufacturability and Cost-E!ectiveness. In order for people
to leverage theOpenEarable platform for research, theymust be able
to easily manufacture the device at an a!ordable cost. To achieve
this, we focused on commercial o!-the-shelf components that re-
quire no specialized tools for manufacture. The PCBwas speci"cally
designed to be manufactured, and components assembled, by a self-
service PCB assembly manufacturer. Additionally, all plastic parts
are designed to be 3D-printable with a standard fused deposition
modeling (FDM) printer, commonly available as consumer 3D print-
ers or available to order online. The assembly of an OpenEarable
should only require minimal equipment, with the "rst version only
requiring a soldering iron, pliers and plastic-compatible power glue.

All hardware components should be compatible with the open-
source Arduino platform.

2.1.3 A"achment and Comfort. The OpenEarable platform, and
any extensions, will need to be validated with users and therefore
it should be easy to attach yet stable and robust against user move-
ment. In addition, the earable should be comfortable to wear within
the limitations of a general purpose prototyping device. For the
"rst version of our design, we use an over-the-ear hook design
that wraps around the auricle to encapsulate the electronics whilst
providing mechanical stability. This provides an opportunity for
sensors to be placed in, on, or around the ear.

2.2 Sensor Selection
For the "rst version of the OpenEarable platform we decided to
incorporate both traditional and new sensing capabilities not cur-
rently available on other earable platforms. For basic input there is
a push button, and a six-axis inertial measurement unit (IMU) for
motion-based applications (e.g., gait analysis [2]) and to "lter out
motion artifacts.

For new sensing capabilities we chose to incorporate an ultra-
sound microphone and an in-ear pressure sensor combined with
temperate sensor. Many earable platforms feature access to an ex-
ternal microphone for voice-based interaction, and most have a
microphone inside the earbud for noise-cancellation. However, we
could not identify an available platform that provides access to a
microphone placed inside the ear canal. Therefore, OpenEarable
features an inward facing ultrasonic microphone which can be
used to detect ear canal shape and deformation based on measured
sound re#ection. We chose an ultrasound microphone to be able to
detect both audible and inaudible sounds which do not disturb the
wearer. We also incorporated a pressure sensor for in-ear barom-
etry which provides information about the ear canal shape and
deformation. In-ear barometry has gained traction in recent years
across a range of applications and have been used to detect jaw and
facial movements [1], blood pressure [10], and contraction of the
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Figure 2: (A) PCB layout of OpenEarable; (B) 3D-rendering of the PCB and components; (C) assembled device with 3D-printed
parts and battery; (D) a person wearing the device.

tensor tympani muscle (small muscle that actuates the eardrum)
which can be used for interaction [7].

3 HARDWARE
The hardware of OpenEarable is inspired by existing works in the
earable domain. We present the electronics, mechanical design, and
production process. Step-by-step manufacturing instructions are
available on the OpenEarable project’s website 3.

3.1 Electronics
The following section describes the circuit layout, microcontroller
unit, power architecture and sensors of OpenEarable. A schematic
system architecture overview is shown in Figure 1.

3.1.1 Printed Circuit Board. We designed the OpenEarable PCB in
an ear-hook form factor which makes it easy to attach the device
to the ear. In addition, the shape of the PCB creates su$cient space
to place all components behind the ear comfortably as this location
was found to be most acceptable to place rigid components [8].
The PCB is 1.6 mm thick and is designed so that all surface mount
device (SMD) components are on the top side only which simpli"es
assembly and makes it possible to have the components placed and
soldered by a self-service PCB assembly manufacturer. Two holes
in the PCB are designed speci"cally to let air and sound pass to
the pressure sensor and ultrasonic microphone. In addition, the
PCB has four holes for zip ties that hold the battery in place, and
one large hole for the speaker. The design "les of the PCB are
open-source and released under a CC-BY license.

3.1.2 Microcontroller Unit. Themicrocontroller unit (MCU) ofOpe-
nEarable is a u-blox NINA-B306-00B module (NINA-B306-01B also
compatible) which is based on the nRF52840 Bluetooth Low En-
ergy (BLE) 5.2 system on chip (SoC). OpenEarable makes use of
the Inter-Integrated Circuit (I2C) interface to communicate with
the pressure and temperature sensor as well as accelerometer and
gyroscope. The digital pulse density modulation (PDM) interface is
used to read the microphone. Programming the MCU is possible
using USB Serial or via Serial Wire Debug (SWD) on the backside
of the PCB (e.g., to initially #ash the USB Device Firmware Upgrade
bootloader).
3OpenEarable project website - https://open-earable.teco.edu/

3.1.3 Power Architecture. In general, OpenEarable is intended to
run from a single LiPo battery cell (Renata ICP501230PS-03, 135 mAh
nominal capacitiy, 3.7 V nominal voltage). Charging is possible via
a micro USB port with electrostatic discharge protection. For bat-
tery charging the board uses the Microchip Technology MCP73831T
charging controller. As the MCU operates at 3.3V, OpenEarable
also comes with a low dropout voltage regulator (Texas Instruments
TPS73733). It is possible to also use the device while charging. When
sampling all sensors and sending out the data via Bluetooth Low
Energy a fully charged OpenEarable lasts roughly 10 hours which
is well above the threshold for most research .

3.1.4 Ultrasonic Microphone and Speaker. An ultrasonic micro-
phone (Knowles SPH0641LU4H-1) with bottom port is placed in
close proximity above the speaker. By default, OpenEarable samples
the microphone at approximately 44 kHz. The speaker inside Ope-
nEarable is a standard true wireless stereo (TWS) 8 mm, 16 Ohm
resistance earbud component that is available from many consumer
electronics stores.

3.1.5 Pressure and Temperature Sensor. Pressure and temperature
are measured in close proximity to the speaker and ultrasonic mi-
crophone. A hole in the PCB next to the pressure sensors redirects
air#ow from inside the ear canal. The pressure and temperature
information are available from a single package inside the STMicroc-
electronic LPS22HBTR pressure sensor. The sensor can be con"gured
to sample from 1 up to 75 Hz in an absolute pressure range of 260
to 1260 hPa. The temperature sensor supports a similar sampling
rate range and has an absolute accuracy of ±1.5 °C.

3.1.6 Accelerometer and Gyroscope. OpenEarable has a 6-axis IMU
(STMicroelectronics LSM6DSRTR) compromising of a 3-axis digital
accelerometer and 3-axis digital gyroscope. Linear acceleration
measurement range and angular measurement range can both be
con"gured. By default, OpenEarable uses ±4 g linear acceleration
range and ±500 dps angular rotation range. In theory, OpenEarable
supports 1 Hz up to 6667 Hz accelerometer and gyroscope data.
Limited by BLE bandwidth, OpenEarable currently reliably supports
up to 104 Hz.

3.1.7 Light Emi"ing Diodes. OpenEarable features two LEDs for
basic output. One static LED indicates the charging status when the

https://open-earable.teco.edu/
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Figure 3: (A) Removing protective layer from adhesive foam of the speaker to glue it on the PCB; (B) Attaching the battery with
zip ties through holes in the PCB; (C) 3D-printed shell of the earplug in two di!erent con"gurations; (D) cross-section view of
the earpiece illustrating the redirection of air#ow and sound.

micro USB cable is plugged in (on: charging, o!: fully charged or not
charging). The second LED can be turned on and o! or controlled
in brightness using pulse-width modulation (PWM).

3.1.8 Push Bu"on. A push button on the lower backside of Open-
Earable can be used for simple, binary input. Another push button
next to the MCU serves as reset button and can be used to enter
the device "rmware updates mode of the microcontroller by double
pressing the button.

3.2 Mechanical Design and Assembly
TheOpenEarable PCB is an integral part of the design as it functions
as earhook. The assembly of the PCB was done by a contract manu-
facturer, see subsection 3.3. The parts that have to be self-assembled
are described below.

3.2.1 Speaker and Ba"ery. The speaker is an adhesive foam ring
pre-installed so it can be glued onto the PCB while also sealing
o! the speaker (see Figure 3 A). The battery is attached onto open
earable using 2 mm wide zip ties (see Figure 3 B).

3.2.2 Earplug. TheOpenEarable earplug consists of two 3D-printed
parts which are glued together and sealed o! with PLA-friendly
glue (Pattex instant glue). The front part sits above the speaker
and the PCB through-hole and seals it of. Either, a foam type seal-
ing earplug with plastic tube (Etymotic Research disposable eartip
ER1-14A, 13mm diameter, see Figure 3 C (a)) to maximise ear canal
sealing, or a triple #ange conical silicone standard eartip can be
put on the earplug (see Figure 3 C (b)). The backside separates the
speaker cables and pressure sensor as well as microphone. Together,
the 3D printed parts ensure that the ear canal is sealed for pressure
sensing.

3.3 Production and Costs
OpenEarable was designed with the JLCPCB 4 parts library in mind.
Therefore, almost all components are available as standard self-
service SMD parts assembly order. The MCU and microphone have
to be ordered speci"cally for assembly which, from our experience
with JLCPCB, can two weeks lead time (depending on supplier

4JLCPCB - https://jlcpcb.com/

availability) following which PCB manufacturing and assembly re-
quire an additional working week. For the 3D-printed parts we used
an Ultimaker 3, however, there are also many inexpensive online
3D-printing services available that could be used to manufacture
the earpiece plastic parts made-to-order.

The total costs excluding shipping for tenOpenEarable is roughly
$400 (≈ $40 per device). The costs per device are split as follows:
$0.50 PCB, $36.50 electric components, $0.10 zip ties, $4.10 foam
earpieces (incl. 4 replacements), and $0.10 3D-printed parts. One-
sided PCB assembly is free of charge.

4 SOFTWARE
AllOpenEarable software is open-source and available on the project
website under the MIT license.

4.1 Firmware
The OpenEarable "rmware is implemented in C++ using the Ar-
duino framework based on the implementation of the Arduino Nano
33 Bluetooth Low Energy (BLE) Sense. This makes it easily possi-
ble for others to change the "rmware running on the device. The
"rmware reads out all sensors and makes them available via BLE.
Due to bandwidth limitations, at least BLE 4.2 has to be supported
by the device connecting to OpenEarable.

4.1.1 Generic A"ribute Profile Specification. OpenEarable’s main
interface for data transfer is a custom-de"ned Generic ATTribute
Pro"le (GATT). Based on the pro"le, various functionalities of the
earable can be controlled as well as sensors can be con"gured and
read out. Table 1 gives an overview of the GATT speci"cation for
OpenEarable for regular data recording, as well as for recording and
sending audio data. The sensor service is responsible for enabling
sensors, con"guring sampling rates and sending out sensor data.
Using the device info service, a unique name and the device genera-
tion can be read out. The dedicated audio service sends out bursts of
audio samples of roughly 1 second duration sampled at 62.5 kHz. At
the moment, continuous audio streaming is not supported, however
this is a software limitation that will be "xed in a future iteration
(see subsection 5.4).

https://jlcpcb.com/
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Table 1: BLE GATT pro"le services and characteristics overview of OpenEarable. A detailed documentation including UUIDs of
the BLE API can be found on the project’s website. The speci"cation follows the schema for usage with edge-ml.org.

Service Characteristic Read / Write / Notify Description
sensorService sensorDataCharacteristic Read / Notify timestamped data of the di!erent sensors

sensorCon"gCharacteristic Write enable sensors and con"gure sampling rate
deviceInfoService deviceIdenti"erCharacteristic Read unique identi"er name of the device

deviceGenerationCharacteristic Read generation of the device
audioService audioCharacteristic Read / Notify burst chunks of ultrasonic audio data

packageInfoCharacteristic Read / Notify info about total package amount and sending state

4.2 Recording Tool
Two options are available to record datawithOpenEarable, a custom-
built dashboard and an open-source and browser-based toolchain
for machine learning on microcontrollers.

4.2.1 OpenEarable Dashboard. To make it easy to get started with
recording sensor data, we have developed a dedicated dashboard
for OpenEarable (see Figure 4). Users can connect to the device via
their browser, con"gure sampling rates, enable sensor streams and
record as well as export sensor data as CSV "les.

Figure 4: OpenEarable dashboard that lets users con"gure
sampling rates, enable sensors, and record data via WebBLE.

4.2.2 edge-ml. Out of the box, the OpenEarable "rmware supports
edge-ml5, which is an open-source and browser-based toolchain for
machine learning on microcontrollers. It o!ers recording, dataset
management and labeling features. Using the default "rmware in-
stalled on OpenEarable, users can simply connect to the device via
WebBLE in their browser via edge-ml. In addition to data collection
and labeling, it is also possible to train, validate, and export embed-
ded machine learning models for OpenEarable using the edge-ml
toolchain.

5 APPLICATION EXAMPLES
To gain an understanding that the OpenEarable platform is out-
putting valid data we used three example application scenarios
from the earable literature.
5edge-ml - https://edge-ml.org

5.1 Motion Tracking
Measuring motion on the ear is a common application in the earable
space which can be used for a number of applications [6]. Figure 6
shows accelerometer and gyroscope readings for a test in which
we recorded data from a single subject performing a sequence
of three activities: (1) standing still, (2) walking, and (3) jumping
jacks. We chose these activities to elicit distinct patterns, and the
jumping jacks allow us to validate the mechanical stability of the
OpenEarable during vigorousmotion. The activities were performed
for 10 seconds in the following sequential order: stand, walk, stand,
jumping jacks, and stand.

(a) Data obtained with the integrated accelerometer.

(b) Data obtained with the integrated gyroscope.

Figure 5: Motion activities recorded with OpenEarable. The
following events can be seen in chronological order: Standing
still, walking, standing still, jumping jacks and standing still.
The data was z-normalized before plotting.

5.2 Ear Canal Pressure
A popular ear canal pressure application is the detection of jaw
motions [1]. Figure 6a shows two sequences of chewing activities,
with a break in-between. The importance of an air tight ear canal
can be seen with the chewing events clearly visible when using
the sealed ear buds. The distinct pressure signal demonstrates the
feasibility of in-ear barometry using the OpenEarable platform.

https://edge-ml.org


UbiComp/ISWC ’22 Adjunct, September 11–15, 2022, Cambridge, United Kingdom Röddiger et al.

(a) No sealing is applied to the earpiece of OpenEarable.

(b) Sealing is applied to the earpiece of OpenEarable so that the
pressure sensor is air tight with the ear canal.

Figure 6: A sequence of ear canal pressure changes including
chewing and not chewing with (a) a triple #ange conical
silicone standard eartip, and (b) Etymotic Research disposable
eartip ER1-14A. The data was z-normalized before plotting.

5.3 Ear Canal Sound Re#ections
It is possible for the ultrasonic microphone to pick up an inaudible
signal from the speaker. This information can be used to understand
the shape of the ear canal because the sound is re#ected di!erently
depending on the shape, a principle which can be used for authenti-
cation [9]. While more detailed evaluations are necessary to assess
generalized authentication performance based on OpenEarable, Fig-
ure 7 shows the spectogram of a 18kHz tone played in the ear canal
for 1 second.

Figure 7: Spectrogram of a re#ected ultrasonic signal which
was emitted into the ear canal withmultiple 1s long probings.

5.4 Future Work
As this is the "rst version of OpenEarable, there are a number of
limitations with the prototype and improvements to be made. The
current 6-axis IMU was selected due to stock limitations, and future
versions will feature a 9-axis IMU with magnetometer. The earable
is currently designed to be worn on one the right ear only and can
not be paired with a second device. Currently, there are no libraries

currently available for recording data from the OpenEarable plat-
form on either Android or iOS devices which is a high priority item
considering popular use cases of earable devices. While transfer-
ring a continuous audio signal over BLE is technically feasible, it
is not yet implemented in the current OpenEarable "rmware and
the speaker only supports playback of a constant frequency. The
Bluetooth classic advanced audio distribution pro"le (A2DP) is not
yet supported. The standard ArduinoBLE library with current con-
"guration achieved a transmission rates of 6.5 kB/s for the audio
signal, we intend to use the NimBLE library, however, just recently
support for the nRF52840 was added and compatibility with the
bootloader ofOpenEarable is pending but under active development.
OpenEarable does not support reading out the battery level

6 CONCLUSION
OpenEarable is the "rst-if-its-kind open hardware initiative for
earable research. In this paper we introduce a new device that
features a series of sensors and actuators: a 3-axis accelerometer and
gyroscope, an ear canal pressure and temperature sensor, an inward
facing ultrasonic microphone as well as a speaker, a push button,
and a controllable LED.We have shown the validity of the hardware
based on three example application scenarios. Regarding the future
development of OpenEarable, we are looking for feedback from the
community and hope to bring parties together that are interested
in pushing the platform further as a joint research e!ort. To stay
up-to-date about the latest developments around OpenEarable we
ask readers to refer to our project’s website.
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ABSTRACT
Map applications on smartphones are powerful navigation tools
for walking among places to visit for the �rst time and are widely
used. On the other hand, checking the map applications tend to
cause accidents on the road such as collisions with people, cars,
and objects. To prevent this, we need to detect a walker’s context
regarding visual search behaviors and provide appropriate navi-
gational information to the walker. In this paper, we propose a
method to detect a walker’s context regarding visual search behav-
iors by using motion sensors on an earable device. We collected
and investigated motion and gaze data from an earable device and
a gaze tracker respectively during street walking from �ve partici-
pants. Based on the investigation, we created a machine learning
model for detecting looking around, smartphone, or normal during
walking and stopping conditions. Our evaluations showed that our
models can detect more than 95% walking and stopping conditions,
and 71% of three detail conditions during walking, respectively.

CCS CONCEPTS
• Human-centered computing ! Ubiquitous and mobile de-
vices.
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Earable device, mobile sensor, behavior recognition, navigation,
machine-learning
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1 INTRODUCTION
In recent years, wearable devices are being widely used on the arm,
head, or abdomen [4, 9, 11]. Using the di�erent sensors mounted on
such devices, it has become possible to easily, and in detail, detect
and collect information from daily activities, such as heart rate,
number of steps, and calorie expenditure. In addition, wearable
devices have become smaller, lighter, and less expensive. It is antici-
pated that we will use wearable devices in daily life more than ever
before. Among wearable devices, those that are worn on the ear are
called "Earable Devices" [4]. When earable devices are equipped
with a motion sensor and a microphone and when these capabilities
are combined with voice recognition functions on a smartphone,
a new hands-free user assistance service can be realized [8]. For
example, if earable devices can detect a walker lost in a city, it can
be possible to realize e�cient and safe route guidance by combining
it with voice guidance. On the other hand, to realize this service, a
high degree of accuracy in behavior recognition is important.
The purpose of this study is to verify whether data collected from
motion sensors mounted on earable devices can be used to correctly
detect a walker’s state while street walking. If the walker’s walking
condition can be correctly detected using earable devices, it will
lead to the realization of new services such as voice navigation at
the appropriate time. The contributions of this paper are as follows:

• The feasibility of using earable devices in detecting awalkers’
visual search behavior during street walking is explored.

• Motion-sensor data are labeled using Tobii’s eye gaze record-
ings.

• Machine learning models are used to classify whether a
walker is walking or stopping from motion-sensor data col-
lected by earable devices.

2 RELATEDWORKS
Research has been conducted to estimate user behavior by using
sensors in wearable devices, in addition to smartphones. Earable
devices, which are devices worn on ears like AirPods, are expected
to become important in the development of wearable devices in the
future. Earable devices will provide various services such as contin-
uous sensing of human behavior, the realization of AI (augmented
reality) through sound, information transmission by AI voice as-
sistants such as Alexa and Siri, and tracking of health status. To
recognize behavioral and physical activities through earable devices,

https://doi.org/10.1145/3544793.3563416
https://doi.org/10.1145/3544793.3563416
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Figure 1: Overview of a method for detecting visual search
behaviors

the aggregation of collected open data is essential. In 2018, Nokia
Bell Labs at the University of Cambridge developed eSense [4], a
research and development platform, to facilitate the activation of
research on earable devices.

Several studies have focused on behavior recognition through
earable devices [1–3, 5]. Compared with a smartphone, which is
shaken in the pocket, and a smartwatch, which is a�ected by arm
swing, an earable device is more stable due to being on the ear. The
accuracy of detecting head movement with earable devices using
just an accelerometer has shown to be higher than using both an
accelerometer and a gyroscope together [6]. These results indicate
the usefulness of sensing design in earable devices. In addition, by
leveraging the superiority of earable devices in accurately track-
ing the state of a head, some studies have shown that an inertial
navigation system using an inertial measurement unit in an ear-
able device could enable voice navigation on behalf of a visually
impaired person [1].

3 VISUAL SEARCH DETECTION
In this section, we present a detailed framework and classi�cation
method.

3.1 Overview
Figure 1 illustrates the overview of our approach for detecting visual
search behaviors while walking in a city. As illustrated, we designed
a two-phase approach for detecting visual search behaviors. First,
our method detects whether a walker is walking or has stopped. Af-
ter that, our method classi�es three types of visual search behaviors:
look around, look hands (i.e., smartphone), and normal.

We categorized the walker’s visual search behaviors as follows:
First, we classi�ed whether participants were walking or stopping,
and each of the two states were further subdivided into three states.
As a result, six types of states were de�ned.

• walking (normal walking.)
• look_sp_while_walking (participantwalkingwhile using their
smartphone.)

• look_around_while_walking (participant looking aroundwhile
walking.)

• stop (participant standing, such as waiting for a tra�c light.)

Figure 2: Wearing AirPods Pro and Tobii Pro Glasses 3

• look_sp (participant standing still while using their smart-
phone.)

• look_around (participant standing still while looking around.)

3.2 Devices
Participants wore AirPods Pro1, as it is an earable device with a
motion sensor to detect a walker’s state. AirPods Pro is equipped
with an accelerometer and a gyro sensor that can collect motion
data in real-time via the iOS CoreMotion API. In this experiment,
motion data from AirPods Pro was continuously collected and
stored by using the AWARE Framework for iOS 2 [7]. We collected
motion sensor data at 30 Hz and saved it in CSV format. In addition
to AirPods Pro, subjects wore Tobii Pro Glasses 3 [10] to track
the walker’s gaze in real time because this experiment required
classi�cation and labeling of thewalker’s gaze during street walking.
Tobii Pro Glasses 3 is an eye tracking device that is widely used in
visual-related scienti�c research. Figure 2 shows an example of a
participant wearing AirPods Pro and Tobii Pro Glasses 3.

3.3 Classi�cation Method
For the classi�cation of two states, we created multiple machine
learning methods. Speci�cally, we usd �ve types of machine learn-
ing models: K-nearest neighbor method, logistic regression, gradi-
ent boosting, random forest, andmulti-class support vectormachine
(SVM). These machine learning models were implemented using
Scikit-learn3. In addition, we performed cross-validation on all the
machine learning models, thereby creating �ve patterns with one
of the �ve subjects as the test data and the other four as the training
data. We then evaluated each evaluation index using the average
value.

4 EVALUATION
In this section, we describe the data collection process, and then we
evaluate the feasibility of detecting the user’s state using motion-
sensor data obtained from an earable device.

4.1 Data Collection
Fivemale college students participated in the data collection process
(IRB-approved). Each participant wore the devices, as shown in
Figure 2, and walked along the designated route. Figure 3 shows
the route of the data collection, which is located in an intricately

1https://www.apple.com/jp/airpods-pro/
2https://github.com/tetujin/AWAREFramework-iOS
3https://scikit-learn.org/

https://www.apple.com/jp/airpods-pro/
https://github.com/tetujin/AWAREFramework-iOS
https://scikit-learn.org/
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Figure 3: Route map of the street walking experiment.

Figure 4: Walker’s gaze recorded by Tobii Pro Glasses 3.

laid out residential neighborhood with streets that are hard to
learn to navigate correctly. Six destinations were set between the
start and �nish points and the walking time was designed to take
approximately 20 minutes.

Participants were given a map of the route through six desti-
nations and they were asked to walk the route accordingly. Over
20 minutes of walking, we collected the motion data and eye gaze
recordings of participants. By having the participants walk along
the route, we aimed to collect motion data as naturally as possible.
Figure 4 shows an example image of video and gaze recordings
using Tobii Pro Glasses 3.

4.2 Evaluation 1: Detecting Walking and
Stopping Conditions

First, we counted the number of each of the two states per subject.
The highest number was approximately 26,000 samples of motion-
sensor data and the lowest was approximately 1,300. To align with
the lowest number, 1,280 samples were randomly selected for each
subject state. We divided the data into 64 samples and calculated
the mean value, variance, maximum value, minimum value, and
standard deviation of each sample.

Walking and stopping could be precisely classi�ed by of �ve
types of machine learning models. The f1-scores are shown in
Table 1. It is apparent taht the random forest model is most suitable
for use. The values of the random forest model are 0.95, 0.97, 0.95,
and 0.95 in the order of accuracy, precision, recall, and f1-score.

Table 1: F1-scores of �ve types of machine learning

Machine Learning Model F1-score

random forest 0.950
gradient boosting 0.950
logistic regression 0.843
multi-class SVM 0.515
K-nearest neighbor 0.495

Figure 5: Estimation accuracy of random forest. The vertical
axis represents the true label, and the horizontal axis is the
predicted label.

4.3 Evaluation 2: Detecting Detailed Conditions
During Walking and Stopping

After classifying the data as walking or stopping, the next step was
to classify the motion-sensor data in detail. There are three detailed
states to walking, as de�ned in the previous section: walking,
look_sp_while_walking, and look_around_while_walking. We esti-
mated the number of each of the three states per subject. The data
of one of the subjects were much less than others; therefore, we
used only four subjects’ data. We used the �ve types of machine
learning models. 512 samples were randomly selected, and we di-
vided the data into 64 samples. Regarding stopping, classifying into
these three states: stop, look_sp, look_around. We evaluated the data
in the same way. 128 samples were randomly selected and divided
into 16 samples.

The results of classifying each walking and stopping into three
states were not su�cient for the e�ectiveness of the machine learn-
ingmodel. About the result of classifyingwalking into three detailed
states, the random forest model exhibited the best performance:
the f1-score was 0.66, and the recall was 0.71. The recall values are
shown in Figure 6. All of the machine learning models performed
poorly while classifying the stopping condition. The results of the
random forest model, the best performer, are shown in Figure 7.
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Figure 6: Estimation accuracy of three states of walking

Figure 7: Estimation accuracy of three states of stopping

5 DISCUSSION
There are two reasons why all machine learning models performed
poorly in classifying each walking and stopping into three detailed
states. First, the amount of data is not adequate for the experiment.
The number of subjects need to be increased to gather more motion
data. In particular, the stopping time was much shorter than walk-
ing time. Therefore, it may be necessary to collect data not only
in a natural state but also in a controlled state. Second, we should
reconsider the execution of the machine learning models. We used
data picking randomly. However, it is very important to deal with
the waveform as a characteristic. For example, when subjects turn
around, a unique waveform of the rotation sensor recordings ap-
pears. Therefore, the method of using a sliding window or bump
detection may be e�ective for keeping the characteristics of the
motion data.

6 CONCLUSION
Focusing on the realization of navigation services for street walking
with earable devices, we investigated the possibility of classifying
user visual search behavior. We evaluated the feasibility of classify-
ing a walker’s visual search behavior by conducting a preliminary
study. The results showed that whether a subject is walking or
stopping can be detected by machine learning models and that the
random forest model especially had a high performance of 0.95
and approximately 1.0 in terms of f1-score and recall, respectively.
However, the classi�cation of walking and stopping remains a prob-
lem, and it is necessary to realize more detailed classi�cation. We
will collect a larger amount of data and �nd a more appropriate
method for detection in the future. Also, wewill provide appropriate
navigation information based on a walker’s context detection.
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