
1 / 9

eSense Android Library Documentation
Installation and Usage

Author Pervasive Systems

Organization Nokia Bell Labs, Cambridge

Last Update May 2, 2019

2 / 9

Contents
1 Overview ... 3

2 Getting Started ... 4

2.1 What We Tested: Device, Android, API, IDE ... 4

2.2 Create the Android project ... 4

2.3 Import the library .. 4

2.3.1 Source code ... 5

2.3.2 AAR library .. 5

2.4 Run the application ... 5

3 Use eSense Library ... 6

3.1 Import the library in your Android project .. 6

3.2 Create the ESenseManager instance .. 6

3.3 Connect the eSense device ... 7

3.4 Obtain the sensor data .. 7

3.5 Change the configuration of the eSense device & Read device events 8

3 / 9

1 Overview

This document describes how to use the eSense library on the Android platform. The eSense
library provides a set of intuitive APIs to interact with the eSense device. It can be seen as a
wrapper to access and operate the eSense device via Bluetooth Low Energy (BLE), which is
described in the eSense BLE Specifications document.

Please note that playing and recording audio are performed via the Bluetooth Classic interface
and are not supported by the eSense library described in this document.

The eSense library is implemented using asynchronous programming and non-blocking execution
with simple event-based APIs. ESenseManager is your starting point for all eSense actions. Once
you have the manager instance, you can manage the connection with eSense, change the eSense
configuration, and read data from eSense via the listener interface. The library provides three
types of the listener interfaces, ESenseConnectionListener, ESenseEventListener, and
ESenseSensorListener.

• ESenseConnectionListener is used to receive notifications when the connection

status has changed.

• ESenseEventListener is used to receive notifications when there is a new eSense

event.

• ESenseSensorListener is used to receive notifications when there is new sensor data.

The detailed information about APIs can be found in the JavaDoc file provided.

4 / 9

2 Getting Started

2.1 What We Tested: Device, Android, API, IDE

The minimum SDK version of the library is set to Android 6.0 (API 23) and we tested the eSense
library in the following environments using Android Studio.

Device model Android version API level

Motorola Nexus 6 Android 7.1.1 API 25

Pixel 2 Android 8.0.0 API 26

Pixel 3 Android 9.0.0 API 28

We expect that the library would operate on other environments, especially on the Android
reference phones or maybe even on earlier than API 23, but do not guarantee it.

2.2 Create the Android project

1. Create a new Android project

2. Make sure that your project’s minSdkVersion is at API 23 or higher.

3. Add the following permission and feature declarations to your AndroidManifest.xml (inside

the manifest tag)

<uses-permission android:name="android.permission.BLUETOOTH"/>

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-feature android:name="android.hardware.bluetooth_le" android:required="true"/>

2.3 Import the library

The eSense library is provided with two forms, the source code and Android Archive (AAR). Choose
one of the two depending on your preference.

5 / 9

2.3.1 Source code

1. Create the package folder under your Android project and name it to

io.esense.esenselib.

2. Put the java files in the zip file under the package.

2.3.2 AAR library

1. Put the esense-lib.aar file into the ‘libs’ folder on your Android project.

2. Add the following implementation declaration under dependencies in build.gradle

for the application module.

implementation 'io.esense.esenselib:esense-lib:1.0@aar'

3. Add the repository declaration in the same build.gradle.

repositories {

 flatDir {

 dirs 'libs'

 }

}

2.4 Run the application

1. Rebuild the project.

2. The first time the app starts make sure to allow it to access the phone location. This is

necessary to use the BLE on Android.

a. Alternatively, enable the Location permission in the App info panel accessible from

the Apps & notifications section in Settings.

6 / 9

3 Use eSense Library

3.1 Import the library in your Android project

import io.esense.esenselib.*;

3.2 Create the ESenseManager instance

manager = new ESenseManager(name, MainActivity.this.getApplicationContext(),
eSenseConnectionListener);

Note that ‘name’ should be set to the name of the eSense device you are using.

To create the ESenseManager, you must implement the ESenseConnectionListener
Interface. The ESenseconnectionListener interface exposes methods to receive
notifications from ESenseManager when the connection status has changed.

The ESenseConnectionListener interface provides the following abstract methods.

Modifier and Type Method and Description

void onConnected(ESenseManager manager)

Called when the connection has been successfully made

void onDeviceFound(ESenseManager manager)

Called when the device with the specified name has been found during a
scan

void onDeviceNotFound(ESenseManager manager)

Called when the device with the specified name has not been found during
a scan

void onDisconnected(ESenseManager manager)

Called when the device has been disconnected

7 / 9

3.3 Connect the eSense device

Connect the eSense device using connect(). You can also specify the connection timeout by using
connect(int). Once the onConnected() event has been received it is possible to interact with the
eSense device, for example reading sensor data or changing its configuration.

Always make sure to disconnect the device when you don’t need it anymore. Failing to do so can
drain the battery significantly.

3.4 Obtain the sensor data

Register a sensor listener and specify the sampling rate at which to receive the sensor data.

manager.registerSensorListener(eSenseSensorListener, 100);

Note that the sampling rate is only a hint to the system. Sensor events may be received faster or
slower than the specified rate, depending on the Bluetooth communication status and parameter
values (refer to the configuration of the BLE connection interval in the eSense BLE Specification
for more details).

To obtain the sensor data, you must implement the ESenseSensorListener interface. The
methods in ESenseSensorListener are called when there is new sensor data. The
ESenseSensorListener interface provides the following abstract method.

Modifier and Type Method and Description

void onSensorChanged(ESenseEvent evt)

Called when there is new sensor data available

The ESenseEvent class represents an eSense event and holds information such as packet index,
timestamp and the sensor’s values. Since eSense does not keep real-time information, the
timestamp in the event object is added by the receiving phone.

You can read the accelerometer and gyroscope data using getAccel() and getGyro() methods
in the ESenseEvent class, respectively. These methods return the ADC values. You can also
obtain the converted values by using convertAccToG() for acceleration in g and
convertGyroToDegPerSecond() for rotational speed in degrees/second. For the conversion,

8 / 9

you need to read the configuration from the eSense device regarding accelerometer/gyroscope
range and pass it to the convertAccToG() and convertGyroToDegPerSecond() methods.

Always make sure to unregister the sensor listener when you don’t need it anymore. Failing to do
so can drain the battery significantly.

3.5 Change the configuration of the eSense device & Read device events

1. Configuration of the eSense device

The ESenseManager exposes methods to change the configuration of the eSense device. With
the library, you can change the device name using setDeviceName(), change the advertising and
connection interval using setAdvertisementAndConnectiontInterval(), and change the
IMU sensor configuration using setSensorConfig(). You can also get the corresponding
information using getDeviceName(), getAdvertisementAndConnectionInterval(), and
getSensorConfig(), respectively.

For more information about advertising and connection interval. Please refer to the eSense-BLE-
Specification document.

As for the sensor config, the library allows to change the full scale range and low pass filter
configuration of accelerometer and gyroscope. The possible options are specified in the following
enum classes: ESenseConfig.AccRange, ESenseConfig.AccLPF,
ESenseConfig.GyroRange, and ESEnseConfig.GYROLPF.

To use convertAccToG() and convertGyroToDegPerSecond() for the conversion of ADC
values, obtain the ESenseConfig instance by using getSensorConfig() and pass it to the
conversion methods.

2. Device events (battery voltage, factory accelerometer offset, and button events)

The eSense library allows applications to read various device events including battery voltage,
factory accelerometer offset, and button events. Use getBatteryVoltage() and
getAccelerometerOffset() to read the battery voltage and factory accelerometer offset,

9 / 9

respectively. The information of the button events does not require any method to be called and
is delivered via the ESenseEvenetListener automatically when the button event has changed.

3. Register and Implement ESenseEventListener

Register an event listener to the ESenseManager instance.

manager.registerEventListener(eSenseEventListener);

To obtain the event result such as the advertising/connection interval and the sensor config, you
must implement the ESenseEventListener interface. The ESenseEventListener interface
provides the following abstract methods.

Modifier and Type Method and Description

void onAdvertisementAndConnectionIntervalRead(int
minAdvertisementInterval, int maxAdvertisementInterval,
int minConnectionInterval, int maxConnectionInterval)

Called when the information on advertisement and connection interval has
been received

void onBatteryRead(double voltage)

Called when the information on battery voltage has been received

void onButtonEventChanged(boolean pressed)

Called when the button event has changed

void onSensorConfigRead(ESenseConfig config)

Called when the information on sensor configuration has been received

void onAccelerometerOffsetRead(int offsetX, int offsetY, int
offsetZ)

Called when the information on accelerometer offset has been received

